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Abstract

In this study, I present an analysis of the best available data on mortality at ad-
vanced ages with the aim of updating and expanding our understanding of which of the
functional forms commonly used to parameterize survival fit high-quality data on death
rates over the age of 80 the best. This has been discussed at length in the literature,
and is of importance to researchers and policymakers in a host of fields. I expand on
the results of previous analyses by adding new data, considering more functional forms,
and improving the strategy for assessing goodness of fit. I find that, for death rates
at ages 88-99, the logistic functional form commonly recommended in the literature
produces moderately good fits, but that the quadratic model enjoys the most robust
empirical support.
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Introduction

In the developed world, life expectancy at birth continues to rise, fertility levels are low,
and populations are aging at remarkable rates. (Kinsella, Phillips and Bureau, 2005; Mar-
tin and Preston, 1994). This has dramatic implications for the needs societies will face in
the future. In order to fully contend with these implications, scholars and policymakers
require a quantitative understanding of death rates above age 80; that is, they need a
mathematical function that summarizes the age pattern of death rates at advanced ages1

with a few parameters. This is important for several reasons. First, the continuing debate
about the limits, or lack of limits, to human longevity requires a solid understanding of
the empirical evidence on death rates at advanced ages to formulate and evaluate theories
that describe the process of aging (Gavrilov and Gavrilova, 2009; Horiuchi and Wilmoth,
1998; Thatcher, Kannisto and Vaupel, 1998). Many of the existing theories imply that
some functional forms should reproduce observed death rates at advanced ages better than
others. Second, many policymakers and planners need accurate, mathematical summaries
of death rates at advanced ages in order to produce forecasts and projections (Bongaarts,
2005; Tabeau, van den Berg Jeths and Heathcote, 2001). Here, a low-dimensional (few pa-
rameter) summary of death rates at advanced ages is useful because it permits projections
or forecasts to focus on fewer parameters. Finally, an understanding of old-age survival
patterns is important for a number of other research questions of great relevance to sociol-
ogy, economics, and public policy. One example is the relationship between improvements
in old-age survival and changes in savings and investment behavior; understanding how
savings behavior changes as a function of improvements in survival past retirement age
has dramatic implications for public policy (Sheshinski, 2009). In order to build models of
behavioral responses to improvements in survival at older ages, a mathematical function
that captures the essential dynamics of those changes is required.

Many functional forms have been proposed to capture the shape of mortality at advanced
ages (Tabeau, van den Berg Jeths and Heathcote, 2001; Thatcher, Kannisto and Vaupel,
1998). In this article, I present an analysis of the best available data on mortality above age
80, with the aim of updating and expanding our understanding of which of the functional
forms commonly used to parameterize survival fit high-quality data on death rates over
the age of 80 the best. Over a decade ago, Thatcher, Kannisto and Vaupel (1998) studied

1In this paper, I use the term ’advanced ages’ to refer to ages over 80.
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the fit of several functional forms to a unique and carefully constructed database of deaths
at advanced ages. My analysis is similar in spirit to that exercise, with a few important
differences: first, I make full use of the considerable volume of data that have become
available since 1990. I also benefit from a recent, thorough review of the data’s quality
(Jdanov et al., 2008), which allows me to focus on the country-years where quality is least
likely to be a problem. The quantity of high-quality data available to today is therefore
considerably greater than was available a decade ago. I also expand the focus of Thatcher,
Kannisto and Vaupel (1998) to several new functional forms that have appeared in the
literature since their study.

Finally, I make some modifications to the methods applied in Thatcher, Kannisto and Vau-
pel (1998); in particular, I propose the use of more principled criteria for assessing goodness-
of-fit across the functional forms considered, which include an appropriate penalty for the
increased complexity of functional forms with more parameters. This is very important,
as it provides us with some guard against over-fitting idiosyncracies in the data that might
result from small sample sizes at advanced ages.

Methods

Data

I use the Kannisto-Thatcher (K-T) database on Old Age Mortality, which is arguably the
best collection of data on mortality at advanced ages available (Kannisto and Thatcher,
2009). The K-T database contains data on deaths and exposure above age 80 for 35 coun-
tries, with some of the Scandinavian data going back to the mid-18th century. However,
data quality for mortality at advanced ages is a serious concern; see Jdanov et al. (2008)
for a thorough summary of the problems involved in analyzing them. In order to ensure
that poor-quality data do not mislead us in selecting useful functional forms, I only study
country-years of data that were found to be of acceptable quality by Jdanov et al. (2008).
Specifically, I retained the data from 1970-2000 from all countries where more than half of
the years were of the highest quality, and the remaining years were of the second-highest
quality in the assessment the authors provided2. This leaves us with data from Belgium, the

2For Poland, I start at 1971.
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Czech Republic, Denmark, France, West Germany, Italy, Japan, the Netherlands, Poland,
Scotland, Sweden, and Switzerland, making a total of 371 country-years of data for each
sex and single year of age. For the analysis of cohort death rates, I study the birth cohorts
from as early as possible to 1900 for the same countries, for a total of 381 country-cohort
years of data for each sex and single year. Table 1 describes the years and cohorts in our
dataset for each country.

period start period end cohort start cohort end
Belgium 1970 2000 1864 1900

Czech Republic 1970 2000 1864 1900
Denmark 1970 2000 1864 1900

France 1970 2000 1865 1900
W. Germany 1970 2000 1875 1900

Italy 1970 2000 1874 1900
Japan 1970 2000 1869 1900

Netherlands 1970 2000 1869 1900
Poland 1971 2000 1890 1900

Scotland 1970 2000 1869 1900
Sweden 1970 2000 1864 1900

Switzerland 1970 2000 1864 1900

Table 1: Country-years and country-cohorts from the Kannisto-Thatcher Database on Old
Age Mortality (Kannisto and Thatcher, 2009) used in this analysis. I chose all country-
years that Jdanov et al. (2008) found to be acceptable in their systematic review; that is, I
choose all country-years between 1970 and 2000 for countries where more than half of the
years were of highest quality, and the remaining years were of the second-highest quality
in the assessment the authors provided. Cohort data are from all possible years between
1864 and 1900 for the same countries. For both cohort and period analyses, I model ages
80-99.

Functional Forms

We usually obtain data on mortality in the form of central death rates,

m(z) =
Dz

Nz
,

where Dz is the number of deaths between ages z and z+1 in the time period being consid-
ered, and Nz is the number of person-years of exposure in the time period being considered.
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name parameters function sample reference
constant hazard α µ(z) = α

Gompertz a, b µ(z) = a exp(bz)
Kannisto a, b µ(z) = a exp(bz)

1+exp(bz)

Weibull a, b µ(z) = azb

ETA α, T µ(z) = α
1−exp(α(z−T ))

Makeham a, b, c µ(z) = c+ a exp(bz)
logistic a, b, α µ(z) = c+ a exp(bz)

1+α exp(bz)

quadratic a, b, c µ(z) = a+ bz + cz2

extended Weibull α, γ, b µ(z) = α(z − γ)b

Lynch and Brown α, β, γ, δ µ(z) = α+ βarctan{γ(z − δ)} Lynch and Brown (2001)

Table 2: The functional forms for the hazard of death at advanced ages considered in this analysis.
In the functions listed, z is age, µ(z) is the force of mortality at age z, and q(z) is the probability of
death between ages z and z+ 1. In compiling this list, I am particularly indebted to the discussion
of various functional forms, and their origins in the literature, contained in Gavrilov and Gavrilova
(1991) and Thatcher, Kannisto and Vaupel (1998).

The central death rate we observe is a function of a continuous, underlying hazard of death
function which I will call µ(z). The hazard function is the instantaneous probability of
death at age z, conditional on surviving to z; it is also the negative logarithmic derivative
of the survival function, F (z); that is,

µ(z) = −dF (z)
dz

1
F (z)

⇐⇒ F (z) = exp
(
−
∫ z

0
µ(x)dx

)
.

It will convenient to model hazards rather than survival, though the two functions contain
the same information and can be derived from one another. Although the data we are able
to collect usually permit us to compute central death rates, we are generally interested in
the continuous, underlying hazard that led to those death rates. It is these hazards that I
will model in this exercise.

To begin with, I consider several functional forms that have been employed to model
mortality in adult and advanced ages; these are listed in Table 2. Each of these forms has
two or more parameters; once the parameters are fixed, the shape of the hazard funtion is
completely determined.
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Estimation Strategy

I fit each hazard function to each country-year and country-cohort of data using maximum
likelihood. I assume that deaths in an age-sex group are distributed binomially3 with
probability given by the hazard function; that is, for a given sex,

Dz ∼ Binomial(π(z, θ), Nz)

where Dz is the observed number of deaths in age group z, Nz is the observed population
at risk of death in the age group, θ is a vector of parameters for the hazard function being
used, and π(z) is the probability of surviving to age z + 1, conditional on surviving to age
z, and is given by

π(z, θ) = exp
(
−
∫ z+1

z
µ(z, θ)dz

)
.

I approximate π(z, θ) with exp(−µ(z + 0.5)), which is commonly done in applications like
this one (Thatcher, Kannisto and Vaupel, 1998, Appendix A).

The likelihood for an observed sequence of deaths D1, D2, . . . and exposures, N1, N2, . . . is
then

Pr(D|π(z, θ)) =
∏
z

(
Nz

Dz

)
π(z, θ)Dz(1− π(z, θ))(Nz−Dz).

Taking logs and dropping terms that don’t vary with π(z, θ), I have

ll(D|π(z, θ)) ∝
∑

z

[D(z) log(π(z, θ)) + (N(z)−D(z)) log(1− π(z, θ))] . (1)

This is the likelihood I maximize, as a function of θ, in order to fit each hazard function
to the data.

3I also performed all of the analysis presented here with a Poisson specification, and the results were
extremely similar.
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Goodness-of-Fit

I measure the goodness of fit of the various functional forms in two ways: first, I compute
the root mean squared error in the estimated number of deaths for each country-sex-year;
that is, I compute

RMSE =
1
k

√∑
z

(
D̂z −Dz

)2
,

where k is the number of ages being fit. This quantity gives us a measurement of how close
each model’s predictions come to the observed numbers of deaths, in absolute terms; its
units are number of deaths.

Second, I compute Akaike’s Information Criterion (AIC) for each model and use it to
rank them within each country-sex-year; that is, I compute the AIC values within the
country-sex-year and rank them from best to worst. The AIC is essentially a penalized
log-likelihood, where the penalty is a function of the number of parameters being estimated
in the model:

AIC = −2L + 2k, (2)

where L is the value of the maximized likelihood from Equation 1, and k is the number of
parameters being estimated in the model. Although the AIC has a simple form, it can be
justified as selecting the model minimizes the estimated Kullback-Leibler distance between
the distribution of data implied by the model and the one seen in the data (Burnham and
Anderson, 2004; Claeskens and Hjort, 2008). Absolute AIC values are not interpretable,
but the ordering of models given by their AIC values is. The ranking of models by their
AIC values, which I compute for each country-sex-year, is thus an indication of how well the
various functional forms trade off the number of parameters estimated with the accuracy
of their fit to the data. A tradeoff is necessary here because a functional form with too
many parameters is at risk of overfitting – that is, if I allow too many parameters to be
estimated, I risk capturing esoteric features of the dataset I happen to have observed. I
would not want to evaluate theories or produce forecasts based on a model that would
reproduce esoteric features of our data that would not be found in other settings.
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Results

As a sample of the results, Figure 1 shows the observed and fitted death rates from the ten
functional forms for one country-sex-year in the period dataset: Belgium, females, 1989.
The red circles show the observed death rates, while the blue curves show the maximum
likelihood fit of each functional form. I can see that the functional forms vary widely
in their ability to fit the data for this country-year. For example, the four-parameter
logistic form does a decent job of capturing the shape of the observed hazard, which
increases and then appears to plateau, a pattern which has been commented on extensively
in the literature (Gavrilov and Gavrilova, 2009; Horiuchi and Wilmoth, 1998; Rau et al.,
2009). The gompertz function overestimates mortality at the oldest ages, while the extra
parameter of the makeham function addresses but is not able to solve that problem entirely.
The eta and constant-hazard parameterizations both have considerable trouble in fitting
the data well, since they assume that hazard is constant or increasing with age, which is
not what I see in these observations. The weibull also has difficulty adequately capturing
the empirical death rates.

Fits like the ones in Figure 1 were produced for each country-sex-year in the period dataset,
and each country-sex-cohort in the cohort dataset. In order to make conclusions about how
well the functional forms fit the data in general, I will consider aggregate measures of their
performance across all of the country-sex-years and country-sex-cohorts in our data.

Goodness-of-Fit

In order to examine how well each functional form fits the data, I compute two quantities.
The first, root mean squared error, is a measure of how close the predictions for each
functional form come to matching the actual observed numbers of death at each age. This
is a measure of absolute error which does not account for model complexity. The second
quantity is the Akaike Information Criterion (AIC), which includes a term that trades off
between the quality of a model’s absolute fit, and the number of parameters it uses.

Table 3 gives an example of the goodness of fit measures for our running example, Belgian
females in the 1989 period data. The functional forms are ordered by the rank they attain
using the AIC, where rank 1 is the model that fits the data the best and rank 10 is the
model that fits the data the worst. The table also shows the root mean squared error in the
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estimated number of deaths at each age (RMSE), and the difference between each model’s
AIC and the minimum AIC (∆AIC). A few things are remarkable about the results. First,
comparing the AIC ranks with the RMSE shows that the AIC does not uniformly prefer
models whose predictions come closest to the observed deaths in absolute terms; it trades
off between a model’s fit and its complexity. For example, the results from the Kannisto
model are slightly less accurate at replicating the observed data than the results from the
quadratic or logistic forms. However, the quadratic and logistic forms both use one more
parameter than the Kannisto does. Here, the AIC suggests that the extra parameters
are not justified. Note, however, that as a rule of thumb, Burnham and Anderson (2004)
suggest that models with ∆AIC ≤ 2 have some support from the data. In this case, the rule
of thumb suggests that the data also provide some support for the quadratic model.

Summaries of the distribution of RMSE between the observed and fitted death counts for
the period and cohort datasets are presented in Tables 4 and 5. I see that in terms of mean
RMSE, the best-performing functional form in the period dataset is the Lynch-Brown,
followed by the logistic, quadratic, Makeham, Kannisto, extended Weibull, Gompertz,
Weibull, ETA, and constant hazard specifications. For the cohort data, the best performing
functional form, as measured by RMSE, is again Lynch-Brown, followed by Makeham,
quadratic, logistic, extended Weibull, Kannisto, Gompertz, Weibull, ETA, and constant
hazard. In absolute terms, the ETA and constant hazard functions, which are widely used
in theoretical models in economics (Bloom et al., 2007; Sheshinski, 2009, see, for example,),
have on average several times the RMSE of the other functions; on the other hand, the
mean RMSE for the the top few functional forms is very similar. The RMSE results for
the cohort dataset are quite similar.

The results obtained from ranking the models with the AIC are presented in Tables 6
and 7. Table 6 shows summaries of the distributions of AIC rank for the fits to the
period dataset, while Table 7 shows the distributions of the AIC rank of the fits to the
cohort dataset. Since the AIC is a relative measure of model fit, its absolute value is not
interpretable; rather, I examine the distribution of the rank of each functional form across
all country-sex-years or country-sex-cohorts. The model that performs the best in a given
country-sex-year or cohort is ranked 1, while the model with the poorest performance is
ranked 104. For example, in Table 6, I see that across all country-sex-years, the average

4Recall that the AIC includes a penalty for the complexity (ie, number of parameters) in a model, so
that it is possible for model A to outperform model B, even if model A is nested within model B.
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RMSE AIC AIC rank ∆AIC
kannisto 40 174195.11 1 0.00

quadratic 39 174195.37 2 0.26
logistic 39 174197.43 3 2.32

lynch-brown 40 174198.36 4 3.25
makeham 41 174198.53 5 3.42
gompertz 61 174232.21 6 37.10

extended-weibull 80 174264.11 7 69.00
weibull 191 174715.46 8 520.35

eta 400 176451.93 9 2256.82
consthaz 683 180742.69 10 6547.59

Table 3: Root mean squared error (RMSE), Akaike Information Criterion (AIC), AIC ranks, and
differences between each AIC and the minimum AIC (∆AIC) for the maximum likelihood fits of
the functional forms to the period data for females in Belgium, 1989. In this country-sex-year,
the AIC ranking suggests that the Kannisto functional form attained the best tradeoff between
number of parameters and fit. Note that some functional forms with slightly lower RMSE than the
Kannisto attained were still ranked worse because the difference in RMSE did not compensate for
the additional parameters they use. For example, the quadratic and logistic functional forms both
predicted the absolute number of deaths more accurately than the Kannisto model, but according
to the AIC, the difference in absolute fit did not make up for the extra parameter they use. The
differences between each AIC and the minimum AIC, in the column labeled ∆AIC, suggest that the
quadratic model is also substantially supported by the data, using Burnham and Anderson (2004)’s
rule of thumb that models with ∆AIC ≤ 2 are plausible.
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rank for the Lynch-Brown model was 3.28, which is quite good. For the period data, the
best performer in terms of average AIC rank is the quadratic functional form, followed
by the Kannisto, Lynch-Brown, Makeham, logistic, extended Weibull, Gompertz, Weibull,
ETA, and constant hazard specifications. In the cohort data, the results are very similar:
the best average AIC rank is attained by the quadratic functional form, followed by the
Makeham, Lynch-Brown, Kannisto, Gompertz, logistic, extended Weibull, Weibull, ETA,
and constant hazard specifications. Taken together, tables 6 and 7 show that although
several of the functional forms perform well in some country-sex-years, on average the
quadratic performs the best.

Figures 2 and 3 present the entire distribution of ranks for each model in the period and
cohort data. Figure 2 displays all of the distributions of ranks simulatenously, while Figure
3 expands the same distributions across multiple plots for more precise comparison. In
both plots, each color represents a rank, with red being the worst, blue intermediate, and
green being the best. In Figure 2, the order of the functional forms is determined by
their average AIC rank. We see that in the period data, on the left, the Kannisto model
is ranked number 1 (best) more often than any other, but that the quadratic achieves
the best average AIC rank over all of the country-sex-years. Qualitatively, the quadratic,
Kannisto, Lynch-Brown, and Makeham specifications all perform quite well. The logistic
specification, which Thatcher, Kannisto and Vaupel (1998) concludes is the best for fitting
data at advanced ages, is decidedly in the middle of the pack. And the functional forms
used in economic theory, the ETA and constant hazard, consistently perform the worst.
For the cohort data, on the right, the results are similar but not identical. Again, the
Kannisto model is most often ranked best, but it is only fourth in terms of average AIC
rank. The best average rank is again attained by the quadratic model, with the Makeham,
Lynch-Brown, and Kannisto specifications all performing well. Again, the logistic model
is in the middle of the pack, and the models used in economic theory are the poorest
performers.

Conclusion

Many studies of mortality at advanced ages, and related substantive topics, require that
the analyst choose a functional form to summarize the hazard of death by age. In these
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studies, the analyst should employ principled criteria for selecting which functional form to
use. In particular, the criteria used to select a model should explicitly address the tension
between fitting the observed data as well as possible, on the one hand, and minimizing
model complexity and, therefore, the risk of over-fitting, on the other.

In this excercise, I selected ten functional forms used in a wide spectrum of studies, from
forecasting to theoretical modeling, and demonstrated the use of one powerful, principled
tool – Akaike’s Information Criterion – to select the most attractive model. Of the ten
functional forms I considered, the quadratic model had the strongest support from a cross-
national, high-quality dataset of deaths at advanced ages. Several other functional forms
also performed well, but the one most commonly recommended for use in the literature,
the logistic, generally produced only moderately good fits.

In many cases, there will be considerations beyond statistical ones which will limit the set of
candidate models that the analyst will consider. For example, a study that seeks to evaluate
the level of empirical support for theories of aging may only wish to consider functional
forms suggested by one of the theories being investigated. The procedure outlined above,
or a similar one, should still be employed on the reduced set of candidate models to decide
which ones enjoy the strongest empirical support.
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Figure 1: The functional forms fit to the period data for females in Belgium, 1989. The red
circles show the observed death rates, and the blue curves show the maximum-likelihood fit
of each functional form. For this country-sex-year, some functional forms fit the observed
death rates much better than others. The AIC rankings and root mean squared error
(RMSE) values for this country-sex-year are shown in Table 3.
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Figure 2: The distribution of model ranks, according to AIC, for the period data (left) and
the cohort data (right). Red is the worst rank, blue is intermediate, and green is the best.
The plots are ordered by their mean rank in the period data; an expanded visualization of
these distributions is shown in Figure 3. We see that although the Kannisto specification
is ranked first more than any other, the quadratic outperforms it in terms of average AIC
rank in both the period and the cohort datasets. In general, it is clear that the Weibull,
ETA, and constant hazard specifications perform poorly. On the other hand, the quadratic,
Kannisto, Lynch-Brown, and Makeham specifications all perform quite well.
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Figure 3: An expanded version of Figure 2, showing the distribution of AIC rank in the
period and cohort data for each functional form on a separate plot. The color scheme
is the same as in Figure 2: red colors are the worst ranks, blues are intermediate ranks,
and greens are the best ranks. The solid vertical line shows the mean rank on each plot.
Qualitatively, it is clear that the Weibull, ETA, and constant hazard specifications are the
poorest.
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