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The HIV Transmission Network among Men who have Sex with Men in the United States: New Insights 
from Dynamic Demographic Network Models 
 
Goodreau SM, Carnegie N, Vittinghoff E, Buchbinder S 
 
An emerging paradigm in public health seeks to tailor multiple interventions for cost-effectiveness, using 
epidemic modeling to identify potential areas for interaction. However, the complexities of combination 
interventions require new methods for multiple reasons.  We report on a modeling framework 
developed to estimate and simulate HIV transmission among men who have sex with men.  We 
incorporate numerous forms of demographic, relational, behavioral, and biological heterogeneity, 
parameterized from large-scale surveys of MSM in the United States.  We rely on the ERGM framework 
for networks, with two novel extensions (Krivitsky and Handcock 2010, Krivitsky et al. 2011).  Initial 
results suggest that 33% of infections occur within main partnerships, far less than the 68% estimated in 
a recent paper (Sullivan et al. 2009).  Our estimate for the proportion of infections originating with 
diagnosed, untreated men is high (59%). We conclude by discussing implications of our early results, and 
upcoming applications to questions of combination HIV interventions for MSM. 
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1. Introduction 
 
In the United States and other developed nations, HIV remains concentrated among men who have sex 
with men (MSM), with well over half of all new HIV diagnoses within this community (Hall et al. 2008).  
Rates of HIV incidence are on the rise among young MSM, and especially among young Black and Latino 
MSM (CDC  2009). The ecology of HIV among MSM is continually shifting, as a result of behavioral and 
demographic changes, changing types and patterns of HIV testing and its impact on behavior, and the 
gradual expansion of treatment and its impacts on survival and secondary transmission.  Some aspects 
of this ecology – particularly those that are difficult to observe directly—remain poorly understood. 
These include such fundamental questions as the proportion of transmissions that occur within main 
partnerships vs. others, the proportion that occur from men who are aware of their positive status or 
not, from men who are on treatment or not, and from men in each stage of infection (acute, chronic, 
AIDS).  Even for those features for which estimates do exist, those estimates sometimes conflict with 
one another, or may be out of date.  One aspect of the current epidemiology that is particularly murk – 
and of fundamental importance – is the factors driving high incidence among young Black and Latino 
MSM, who consistently report individual levels of risky behavior very similar to other groups with much 
lower incidence. 
  
Developing more precise answers to these questions is a key step in determining the relative potential 
impact of a variety of behavioral and biomedical interventions that are now or are soon to be available 
for MSM. This is because these interventions work on different modalities. The potential impact of 
couples counseling obviously depends on transmission levels within couples; prevention with positives 
on the degree to which transmissions occur from men who know their status; increased testing 
interventions on the degree to which men who don’t know their status are transmitting. 
 
The work reported in this paper represents the baseline work for a larger NIH-funded project, called 
PUMA (Prevention Umbrella for MSM in the Americas).  Part of the MP3 (Methods for Prevention 
Packages Program), the goal of this work is to better assess the ways in which existing and imminent 
interventions can be combined, packaged and tailored for greater efficacy.  Modeling is one piece of this 
work.  The project will ultimately be modeling a wide variety of possible tailored combination 
interventions; here we report on the methods used to develop the model, and the baseline findings.   
 
Because of our need to consider so many different modalities of interventions in the same model, we 
needed to revise existing modeling methods and philosophy considerably to make progress.  General 
modeling philosophy, as in much of science, is to keep models as simple as is reasonable for the 
question at hand, in order to gain maximum clarity and interpretability.  Additional detail, although 
increasing realism, can actually lead to less understanding; a balance point must be struck. For most 
modeling applications, that balance point leads to fairly simple models, but in this case, the balance 
point is far more complex.  To be able to address the set of questions that the project is asking in any 
form, we require network-oriented, agent-based models.  The existing tools for these models have had 
their own problems, however.  We now lay out the existing tools, including their strengths and 
weakness, to motivate the methodological developments. 
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The most common approach traditionally for epidemic modeling involve “mass-action” or 
“compartmental” models expressed by systems of differential equations.  However, these models 
require a number of simplifying assumptions that limit the kinds of questions that can be easily 
addressed.  One particular problem is that model complexity increases multiplicatively with the number 
of forms of heterogeneity added into the model.  Most published compartmental model have no more 
than five or so forms of heterogeneity among the actors in the population (e.g. age, sex, circumcision 
status for males, disease status, sexual activity class).  The combination interventions being considered 
by NIH, however, require us to consider much more demographic, biological, and behavioral 
heterogeneity than that.  At last count, the model discussed in this paper contains forty-one different 
demographic, behavioral, and biological attributes for each man, and that number continues to grow. 
Compartmental models have additional limitations – they do not allow one to consider arbitrary 
momentary degree distributions (that is, the proportion of men in exactly 0, 1, 2, 3 etc. ongoing 
relationships), which is known to affect transmission levels strongly, and is of central importance to 
some of our key questions.  They also typically require that one discretize heterogeneity that is really 
continuous– for example, dividing men into those with “high”, “medium” and “low” viral load. 
 
Agent-based network models, on the other hand, offer a number of benefits – not the least of which is 
that their complexity only increases roughly linearly in the number of new forms of heterogeneity. 
Members of the population can thus be endowed with a far richer set of attributes.  This framework also 
makes it easier to consider a wider array of hypotheses about the effects of relational structure on 
disease outcomes, including those pertaining to degree distributions or to forms of demographic, 
biological or behavioral heterogeneity that are continuous rather than discrete. 
  
With this, and many other applications in mind, a major undertaking in the field of social network 
analysis for the last decade has been the development of a tractable and statistically based framework 
for estimating statistical models of network structure from data, conducting inference and tests of fit for 
those models, and simulating networks from them.  The framework is known as exponential random 
graph models (ERGMs), and its theory and implementation have been extensively discussed in the 
literature (Frank and Strauss 1986, Strauss and Ikeda 1990, Wasserman and Pattison 1996, Handcock 
2003, Snijders et al. 2006, Robins and Morris 2007, Hunter et al. 2008).   As a result, we now have the 
tools for general estimation and comparison of network models of arbitrary complexity. 
 
Use of these models has, until now, required one major tradeoff, however, which has effectively 
prevented their widespread application to questions of disease transmission.  The versions discussed in 
the literature above have all required the assumption of a fixed population, and fixed values for any 
attributes that affect relational formation and dissolution. In other words, they have not been able to 
incorporate any vital dynamics or other forms of demographic change. Recent developments, discussed 
below, have finally overcome these limitations, extending the modeling framework into cases with 
dynamic sets of actors, actor attributes, and relations. 
 
In this paper, we report on a model developed through the NIH MP3 (Methods for Prevention Packages 
Program) to estimate and simulate models of HIV transmission among men who have sex with men.  
These models incorporate demographic realism (population entry and exit, aging, race/ethnicity), 
relational richness (both long-term partnerships and short-term contacts), behavioral diversity (mixing 
patterns by race and age in both types of partnerships, rates of unprotected sex based on diagnosis and 
disclosure status, degree distributions), biological diversity (viral load, infectivity), treatment status, 
circumcision status, and many other forms of heterogeneity necessary to consider intervention packages 
for this population.  The model is parameterized using data from multiple large-scale behavioral and 
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demographic surveys of MSM, including the baseline survey of the Explore study (Koblin et al. 2003, 
Chesney et al. 2003) and NHBS (MacKellar et al. 2007).  Network model estimation uses the exponential 
random graph model framework found in the R statnet packages, modified to address relational 
dynamics (Krivitsky and Handcock 2010).  Network and disease simulation employs an additional 
extension to the ERGM framework that addresses changes to model parameters as population size and 
composition change (Krivitsky et al. 2011).  
 
2. Methods 
 
We outline our overall approach first, and then describe the steps in more detail below.  In reading the 
outline, it is important to understand that relations with positive duration are handled separately from 
instantaneous ("one-off") contacts, since the underlying mathematics of the two types of networks is 
distinct. 
 
Step 1: Obtain a model and data-driven estimates for the dynamic main partnership network  

• Step 1a. Generate estimates of cross-sectional main-partner network structure for a population 
of MSM using egocentric network data. 

• Step 1b. Generate information on the durations of main-partner relationships for this 
population. 

• Step 1c. Specify a “separable–temporal ERGM” (Krivitsky and Handcock 2010) that encapsulates 
the network processes described by 1a and 1b. 

• Step 1d. Use simulated annealing to generate a complete network with the demographic 
composition and network structure implied by Step 1a. 

• Step 1e. Estimate the model from Step 1c  on the population from Step 1d, using the separable-
temporal ERGM estimation methods of Krivitsky and Handcock (2010), combined with an 
approximation method derived by Carnegie et al. (2011). 

 
Step 2: Obtain a model and data-driven estimates for the cross-sectional casual contact network 

• Step 2a. Generate estimates of cross-sectional casual (one-off) contact main-partner network 
structure for a population of MSM using egocentric network data. 

• Step 2b. Specify a standard cross-sectional ERGM that encapsulates the network processes 
described by 2a. 

• Step 2c. Use simulated annealing to generate a complete network with the demographic 
composition and network structure implied by Step 2a. 

• Step 2d. Estimate the model from Step 2b on the population from Step 2c, using standard cross-
sectional ERGM methods. 

 
Step 3: Generate demographic parameters (e.g. all-cause ASMRs, HIV mortality rates by viral load), from 
data. Parameters and their sources are detailed in Table 1.  
 
Step 4. Generate additional parameters (e.g. testing, treatment, transmission by viral load) from data. 
Parameters and their sources are detailed in Table 1. 
 
Step 5. Simulate each scenario over time, using the following general approach.  For each time step: 

• update vital dynamics 
• update other attributes (testing status, viral load, etc.) 
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• update main network stochastically contingent on the new population structure and attributes, 
using the size- and composition-invariant methods of Krivitsky et al. (2011) 

• model acts of unprotected anal intercourse (UAI) within main partnerships for that time step 
• generate a new cross-sectional casual UAI contact network contingent on the new population 

structure and attributes 
• model transmission events within each UAI event 

 
We implement network simulation and estimation using statnet (http://www.statnetproject.org; 
Handcock et al. 2003). The remained of the tasks are coded in R. 
 
Underlying  both Steps 1 and 2 is the exponential random graph model (ERGM) framework discussed 
earlier.  For Step 1, however, we must make the switch from cross-sectional ERGMs to dynamic ERGMs. 
Dynamic ERGMs are used to predict the probability of a partnership forming or dissolving.  The dynamic 
ERGM model used is a separable formation and dissolution model (Krivitsky and Handcock 2010) to 
independently control the formation and dissolution of main partnerships.  This model is essentially two 
parallel ERGM models, one that acts only on the set of empty dyads (formation), and another that acts 
only on the set of existing partnerships (dissolution).  The changes in the two parallel operations are 
then merged to form the realization of the network at the new time step. 
 
We specify the partnership formation part of the ERGM with an edges term to control density, an 
individual attribute of race to allow for differential rates of partnership formation across races, 
partnership-level matching on race, age and preferred sexual role, and a term for the number of men in 
two simultaneous relationships to control for the tendency to form concurrent partnerships. 
Represented in conditional auto-logistic form the model is: 
 
logitP(yij=1 | Yij

c) =  Θ(e)δ(e) + ΣrΘ(ur)δ(ur) + ΣrΘ(mr)δ(mr) + Θ(a)Σk<lδ(abs(sqrt(age k) – sqrt (age l))) + 
Θ(d2)δ(d2) + Σc=r,vΘ(mc)δ(mc) 

 
where yij = the pair of persons i and j, and yij = 1 indicates they are partners; Yij

c = the rest of the pairs in 
the network, excluding the yij pair; e = total number of partnerships of all types in the network; ur = # of 
partnerships of persons of race r; mr = # of partnerships with both partners of race r; mc = # of 
partnerships with both partners of role class c (which can take values i = strictly insertive; r = strictly 
receptive; v = versatile; see below); k and l represent the actors in each main partnership; d2 = # of 
actors in exactly two main partnerships at a given time. The function δ represents the change in the 
specific network statistic (e, u, m or d) when the pair i,j become partners. Θ represents the coefficients 
for each term. 
 
The model for dissolution of partnerships is a simple Bernoulli model with parameter determined by the 
average partnership duration. The parameter in this case does not control density directly (as it would in 
a static Bernoulli model), but rather the probability of a partnership persisting through the current time 
step.  This, together with a Markov independence assumption implicit in the model, generates an 
exponential survival curve with mean approximately 2.2 years for all main partnerships. 
 
Step 1e consists of estimating the values of the Θ coefficients that correspond to observed sexual 
network patterns.  Estimating these parameters directly for the dynamic ERGM is extremely 
computationally intensive (on the order of days to weeks), and can be unstable if the starting values 
used for the MCMC algorithm are far from the true model parameters.  We use an adjustment to the 
static ERGM fit for the formation model to obtain estimates of the dynamic model parameters (Carnegie 
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et al. 2011).  Since the formation model controls only formation of new ties, using the edges term from 
the static ERGM fit will lead to high-density dynamic networks.  We can adjust the edges term by 
subtracting off the dissolution parameter in order to obtain a parameter estimate that results in 
networks with appropriate density.  This can be thought of as requiring a lower density in the sub-graph 
of empty dyads on which partnership formation acts in order to maintain the appropriate density in the 
full graph. 
 
Note that estimation occurs on a fixed set of nodes with fixed attributes.  Later, updating the network at 
each time step will need to occur in the context of a set of nodes that are changing, both in their set 
(due to births and deaths) and attribute composition (due to aging, disease transmission, testing, etc.) 
The approach laid out in Krivitsky et al. (2011) is what will allow us to use the estimated values we have 
just obtained in Step 1e for a network of fixed composition on a demographically dynamic one. We 
return to this point below.  
 
Casual contact model.  For the casual model, the network is defined as those pairs having acts of UAI on 
a given day.  The specific casual model that we include is: 

 
logitP(yij=1 | Yij

c) =  Θ(e)δ(e) + ΣrΘ(ur)δ(ur) + ΣrΘ(mr)δ(mr) + Θ(a)Σk<lδ(sqrt(age k) – sqrt (age l)) + 
ΣtΘ(mt)δ(mt) + ΣqΘ(q)δ(q) + Σc=r,vΘ(mc)δ(mc) 

 
where yij = the pair of persons i and j, and yij = 1 indicates they are partners; Yij

c = the rest of the pairs in 
the network, excluding the yij pair; e = total number of partnerships of all types in the network; ur = # of 
partnerships of persons of race r; mr = # of partnerships with both partners of race r; mc = # of 
partnerships with both partners of role class c (which can take values i = strictly insertive; r = strictly 
receptive; v = versatile; see below); mt = # of partnerships with both partners of diagnosis status t; q = # 
of partnerships of persons of casual activity class q. The function δ represents the change in the specific 
network statistic (e, u, m or d) when the pair i,j become partners. Θ represents the coefficients for each 
term. Unlike in the main partnership model, here there is no constraint on degree distribution. An 
individual can have casual UAI with more than one person per day, with the degree distribution flowing 
from the rest of the parameters, and thus approximately Poisson. We explain the casual activity classes 
below. 
 
With estimation for both the main and casual models complete, we can turn to Step 5, simulation. We 
now detail specific features of the simulation. 
 
Vital dynamics. Entries into the population occur at a fixed rate. All men enter seronegative and at age 
18. Deaths/departures occur in three ways: (1) Through non-AIDS-related deaths: these occur daily at 
rates derived from CDC life tables (see Table 1); (2) Through AIDS mortality.  For more information, see 
the sections Viral load and Treatment below; (3) Through departure from our population of interest, 
which occurs at completion of age 65. 
 
Casual activity class.  It is not accurate to assume that men are all homogeneous with regard to their 
propensity to engage in casual UAI; the variance in the distribution of number of acts over the last year 
in all of our data sources makes this clear.  That said, we have little information on the continuity in 
men's UAI risk from year to year over their lives, and the degree to which men transition through levels 
of risk.  In order to maintain the high variance in the casual UAI behavior distribution, we partition men 
into five activity classes, each of which has a mean underlying daily risk of casual UAI equal to the mean 
in the corresponding quintile of the observed data. 
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Role. Men are assigned one of three roles, whose prevalence is derived from data (Table 1): exclusively 
insertive, exclusively receptive, and versatile. Men who are versatile have a preferred preference for 
insertivity that varies over the range (0,1) and which is drawn for each man with a uniform distribution. 
Both our main and casual models assign a coefficient of -∞ to the two mc terms, effectively preventing 
pairs of men who are both exclusively insertive or both exclusively receptive from pairing.  When two 
versatile men pair, the two men are chosen to be the insertive partner for each contact separately, with 
probability r1/(r1+r2) and r2/(r1+r2), where r1 and r2 are their insertivity preferences, respectively.  
 
Viral load.  In the absence of treatment we model daily viral load as a six-parameter curve, following 
parameters derived from Little (1999).  Viral load here is measured in log10 units: 
 

Days 0-21:   rises linearly from 0 to 6.886 
Days 21-40:   declines linearly from 6.886 to 4.5 
Days 40-3650:   equals 4.5 
Days 3650- 4380:  increases linearly from 4.5 to 7.0 
Day 4380:  death 

 
This corresponds to an onset of AIDS after 10 years, and death after 12 years (Buchbinder et al. 1994). 
Viral load follows different trajectories for those men on treatment; see treatment below. 
 
Transmission. Transmission is a function of viral load, sexual role (insertive, receptive) of the negative 
partner, and circumcision status if the negative partner is insertive. Estimates for transmission by viral 
load for each of the three possibilities (negative =insertive circumcised, negative  = insertive 
uncircumcised; negative = receptive) were derived by using Wilson et al. (2008)  provide the functional 
form linking viral load and transmission, but setting base transmission for a chronically infected person  
(assumed to have viral load 4.5) for URA and UIA from Vittinghoff et al. (1999).  Since Vittinghoff did not 
split out their estimates by circumcision status, we assume that the circumcised:uncircimcized ratio of of 
0.4 for vaginal intercourse (Gray et al. 2007) holds for anal intercourse as well, and assumed that 
Vittinghoff’s population reflected the overall circumcision prevalence of the adult male US population. 
Collectively this yields estimates for probability of transmission of: 

 
0.126% for a circumcised man during UIAI with a male positive with viral load of 4.5 
0.314% for an uncircumcised man during UIAI with a male positive with viral load of 4.5 
0.820% for any man during URAI with a male positive with viral load of 4.5 

 
each of which can be generalized to contact with a man of arbitrary viral load using the functional form 
from Wilson (2008). 
 
UAI within main partnerships.  Main partnerships may see UAI on some days and not others, which we 
model as a function of diagnosis status of the members, disclosure status and AIDS status. When main 
couples disclose, they are assumed to always disclose their status as they know it (i.e. those who have 
ever tested positive report so, all others report as having never tested positive.)  We assume that 90% of 
main couples disclose (see Table 1). There are four different UAI probabilities for men: undisclosed, 
disclosed as serodiscordant, disclosed as seroconcordant negative, disclosed as seroconcordant positive.  
The last is mathematically irrelevant, since in all such cases both men are truly positive, and cannot 
transmit. Daily probability of UAI for the other three are derived in Table 1. 
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Treatment. Once men are diagnosed and have been infected long enough to have a CD4 count that 
merits treatment, they may begin treatment. From here, we model three treatment trajectories: on 
treatment and fully suppressed, on treatment and partially suppressed, never receiving  treatment. 
Although in reality individual men may move among these three states, we have essentially no data at 
all on the frequency with which they do.  Instead, we model individual men entering and staying on one 
path, in such proportions as to capture the prevalence of the three states in the population from data. 
 
We want to know the incidence of each (that is, what proportion of men will go into each category, by 
race).  This is not equal to the prevalence of each group among those who are HIV+, and at or beyond 
the time for going on treatment, because  each group has a different mean life expectancy. Our data 
should come on two forms: (1) the proportion of MSM dying of AIDS who have never received any 
treatment, and (2) of those men on continuous treatment for six months or more, what proportion are 
fully suppressed, in the cross-section.  The former is akin to an incidence measure, and the latter a 
prevalence measure, so they must be treated separately. Specifically, the former can be taken as an 
estimate of the proportion of men who will go into the never-treated trajectory, while the latter cannot 
be taken as an estimate for the proportion of treaters going into the partial treatment trajectory. We 
use estimates for the expected duration of each stage to back-calculate the incidence of each in order to 
match observed prevalence (Table 1). 
 
For those men going on treatment, it does not automatically being at the time when CD4 counts would 
be expected to reach levels recommended for treatment by current guidelines. Instead, it varies by race 
based on data on CD4 count at actual treatment initiation from Swindells et al. (2002), which can be 
converted into expected times from infection to treatment using the functional form of Lyles et al. 
(2000). This yields expected time from infection to treatment initiation of: 
 

Blacks = 4.1 years 
Latinos  = 5.0 years 
Other = 3.6 years 

 
Network evolution. As written, the dynamic ERGM assumes a fixed set of nodes in the network.  In order 
to realistically model demographic processes acting on the population as the network evolves, we 
include an offset term to adjust for network size in the formation model (Krivitsky et al. 2011).  This 
simple adjustment to the model parameters yields a model that maintains mean degree as network size 
increases, rather than density, as would occur if we used the parameters generated on the original 
network without adjustment.  This is clearly a better approach for modeling sexual partnerships; as a 
general rule, we do not see that men have more partners on average in larger populations, as would be 
the case with constant density, but rather that the number of partners stays roughly the same 
regardless of network size, as is true with a constant mean degree. This approach not only maintains 
mean degree, but also maintains the expected mixing structures and degree distribution. 
 
3. Results 
 
Our model generates epidemics that map qualitatively onto the observed overall prevalence rates in this 
population.  HIV prevalence in the latest round of NHBS was 25%; in our model, after the initial period of 
burn-in, prevalence equilibrates at around 27%.  As we then simulate forward in time from the present, 
individual runs predict prevalence of 27-30% prevalence in the coming decades (Figure 2) if there were 
no behavioral and biomedical changes.  The one exception to this is the prevalence of circumcision 
among men coming of age, which is lower than it is among men already in adulthood, since neonatal 
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circumcision rates have been falling over the past decades (see Table 1).  This pattern is included in the 
model, and is responsible for the very slight rise in prevalence predicted over the coming decades. 
 
Main vs. casual partner. Our models consistently estimated that main partner UAI is the source of 37% 
of infections (Figure 3a), despite constituting about 50% of the acts of UAI in the population. This 
number is considerably lower than the recent estimate of 68% by Sullivan et al. (2009). Since epidemic 
dynamics can be highly non-linear, we ran counterfactual models to consider the impact of reducing 
levels of UAI within main partnerships.  Eliminating all main partner UAI reduces incidence by 43%, with 
the effects on incidence of various intermediate levels of reductions between 0% and 100% being in fact 
strongly linear (Figure 4). 
 
Stage, Diagnosis, role and treatment (Figure 3b-e). The proportion of infections stemming from men 
with diagnosed but untreated infections was high.  In our model, this represented 59% of new infections, 
more than those from undiagnosed (14%) and treated (27%) combined. This is in concert with recent 
models that suggests that universal treatment has great potential to decrease HIV incidence for MSM 
(Blower et al. 2000, Law et al. 2001, Velasco-Hernandez et al. 2002, Lima et al. 2008).  These earlier 
works did not provide estimates for the proportion of infections by stage or by diagnosis status or 
treatment status, however, so the results cannot be directly compared.  Nevertheless, our initial results 
reflect a qualitatively similar finding from these various less richly parameterized models.  On the flip 
side, it directly conflicts with phylogenetic studies that examine clusters of outbreaks, which suggests 
that 30-50% of infections may occur in the acute phase, when virtually all men are undiagnosed (Yerly et 
al. 2001, Pao et al. 2005, Brenner et al. 2007). 
 
Race. Our model only found modest differences in HIV prevalence and incidence by race/ethnicity, 
despite including racial differences in sexual mixing, circumcision rates, treatment initiation, and 
treatment response. Prevalence by race/ethnicity is plotted in Figure 5.  Average annual incidence was 
Black 2.43%, Latino 2.16%, other 2.11%. These difference are nowhere near as high as the massive 
differences in incidence observed by the CDC (2009).  
 
4. Discussion 
 
The proportion of infections occurring within main partnerships is likely to be substantially lower than 
that found in recent, high-profile work by Sullivan et al (2009).  That paper estimated that 68% of new 
HIV infections occur within main partnerships, a number that has upended some of the conventional 
wisdom of HIV prevention practice.  However, the Sullivan et al. model used a stochastic, Bernoulli 
model, whose structure appears to imply mathematically that a single positive individual could infect 
their partner more than once.  Our model, in contrast, is a fully specified demographic dynamic model, 
and estimates that only 33% of infections occur within main partnerships. We do not find any evidence 
for non-linear, synergistic effects of potential main partner interventions. 
 
Our initial baseline results suggest that approaches to earlier treatment, if they can effectively deal with 
issues of toxicity and resistance, have the potential to dramatically reduce secondary transmission, 
potentially to the point of near-elimination of the epidemic among MSM. Far more modeling work must 
be done to confirm this initial impression, however. Most importantly, the divergent impressions 
created by the behavioral- and modeling-based research and the phylogenetics-based research must be 
reconciled. 
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The model demonstrates that observed racial/ethnic differences in sexual mixing, circumcision rates, 
treatment initiation, and treatment response explain only a very little portion of the HIV disparities 
among Blacks, Latinos and other populations in the US. Collectively, these phenomena have been 
discussed as possible sources for the disparities, but no work before now (to our knowledge) has 
combined them to demonstrate their joint effects.  Far more work must be done to explore the topic of 
the sources of racial and ethnic disparities among MSM in the US. Leading topics that we hope to 
explore next include patterns of concurrency by race and differential age mixing within and across 
race/ethnicity groups.  With all of these included, we hope to model the differences in mean levels of 
risky sex needed to generate the observed disparities, to see if these can in any way be reconciled with 
existing reports. 
 
We stress that these are preliminary results.  Much work has gone into the development of the model 
and the analysis of data in order to parameterize that model.  These results are thus only the very 
beginning of a far more extensive analysis of the model expected to last for 2-3 years as a minimum.  
Most pressing is that for these baseline measures, sensitivity analyses will be conducted over those 
model inputs about which we have the least confidence. Once this is done, the model will be used to 
explore individual behaviors and interventions (circumcision, couples testing, NAAT testing, pre-
exposure prophylaxis, serosorting with positives), as well as combinations of these interventions. 
 
Although the results are preliminary, the work so far has clearly demonstrated one methodological 
point: epidemic modelers no longer need to trade off looking at realistic network structures with looking 
at realistic demographics.  We now have the ability to integrate the two in a general, inferential 
framework for understanding the complex ecologies of disease transmission in realistic, 
demographically and behaviorally diverse communities. 
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Table 1: Data sources 
 
The two main data sources for behavioral parameters are the baseline data from the Explore study 
(Koblin et al. 2003, Chesney et al. 2003), and Round 1 of the National HIV Behavioral Surveillance system 
(MacKellar et al. 2007). Each has been described in detail in numerous additional studies and analyses.   
 
Model 
parameter(s) 

Source(s) and value(s) 

Age-specific Non-
AIDS mortality 
rates 

All –cause mortality: 
National Vital Statistics Reports Volume 56, Number 9, December 28, 2007. 
United States Life Tables, 2004 by Elizabeth Arias, Ph.D., Division of Vital 
Statistics, pub.  
(http://www.cdc.gov/nchs/data/nvsr/nvsr56/nvsr56_09.pdf) 
 
AIDS mortality (to subtract from all-cause in order to get non-AIDS mortality):  
National Vital Statistics Reports Volume 58, Number 8, December 23, 2009. 
Deaths: Leading Causes for 2005 by Melonie Heron, Ph.D., and Betzaida Tejada-
Vera, B.S., Division of Vital Statistics 
(http://www.cdc.gov/nchs/data/nvsr/nvsr58/nvsr58_08.pdf) 

Daily probability of 
casual UAI  

Explore  
Placed in five quintiles: 
0.0020 
0.0129 
0.0292 
0.0610 
0.2246 

Race mixing in 
casual  

NHBS. Relative log-odds: 
 
-11.53 Black-Black 
-12.38 Latino-Latino 
-12.41 Other-Other 
-12.72 Black-Latino 
-12.73 Latino-Other  
-13.49 Black-Other 

Race mixing in 
steady 

NHBS. Relative log-odds: 
 
-  9.63 Black-Black 
-10.44 Latino-Latino 
-10.58 Other-Other 
-10.89 Latino-Other  
-11.11 Black-Latino 
-11.55 Black-Other 

Daily probability of 
UAI within an 
existing  main 
partnership, by 
disclosure status 

Explore. 
undisclosed 0.114 
disclosed + - 0.108 
disclosed - - 0.167 

http://www.cdc.gov/nchs/data/nvsr/nvsr56/nvsr56_09.pdf
http://www.cdc.gov/nchs/data/nvsr/nvsr58/nvsr58_08.pdf
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Diagnosis status 
mixing in casual 
contacts 

NHBS. Relative log-odds: 
 
-11.67 Pos-pos  
-12.56 Neg-neg 
-13.02 Neg-pos 

Age mixing within 
main partnerships 

NHBS. 
Mean difference in the absolute value of the square root of the ages of main 
partners = 0.61. 
 
 

Age mixing within 
casual contacts 

NHBS. 
Mean difference in the absolute value of the square root of the ages of casual 
contacts = 0.73. 
 

Age distribution Initially set as uniform from 18-65; burnin period ensures that the age 
distribution settles down to what is appropriate for the given birth and death 
rates as well as the HIV transmission and mortality experience. Model 
exploration begins after the end of 100 years of burnin. 

Circumcision status 
for population 
coming of age prior 
to the present 

The STEP study (Buchbinder, personal communication) 
Black=85%  
Latino=50% 
Other=91% 
 
HPTN gave very similar numbers: 
O=88%; B=90%; L=47% 

Circumcision status 
for population 
coming of age after 
the present 

National Hospital Discharge Survey 
Black=70%  
Latino=50% 
Other=60% 

Prevalence of role 
exclusivity 

Explore. Reported role over previous 18 months. 
8.0% exclusively insertive 
8.0% exclusively receptive 
84.0% versatile 

Proportion of 
population in 0, 1, 
or >1 main 
partnerships in the 
cross-section 

Project T, Explore, NHBS-SF, HPTN039 
 
None of the main studies asked this question directly.  
 
Project T (Liu, personal communication) found that 40% of men in a main 
partnership on the day of the interview. 
 
Neither Explore nor NHBS-SF nor HPTN039 asked the questions directly.  
However they all allowed one to put an upper and lower bound on the number.  
Upper = % with any main partner in last x months.  lower = living with partner. 
All three center around the 40% figure as well: 
 
Explore:     24.4% to 50.2% 
NHBS-SF:   34.1% to 43.0% 
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HPTN039:  26.4% to 54.2% 
 
Percent in >1: nobody asked this directly.  However, it is important to not simply 
forbid it (which would underestimate the importance of main partners as men 
themselves define them), nor to leave it unparameterized (which would result in 
something like 16% of men having >1 main partner, clearly too high).  Explore 
asked questions that allowed us to estimate upper and lower bounds as 2.8% 
and 0.6% of the population in 2 main partnerships at any given time.  Lacking 
any other information, we simply took the average (1.7%). 

Race composition NHBS 
17.5% Black 
27.0% Latino 
55.5% Other 

Main partnership 
mean duration 

1120 days 
NHBS 

Daily probability of 
HIV test 

1/351  
Golden reports a median interval of 243 days.  Assuming a geometric 
distribution, this corresponds to a mean interval of 351 days and a daily average 
probability of testing of 1/351 days.  This should correspond to men getting 
tested almost exactly once a year on average, which is what other studies have 
reported qualitatively. 

HIV test window 
period  

22 days 

Reduction in casual 
UAI once AIDS 
stage is reached 

40% 
Wawer et al (2005) 
We could find no data for MSM specifically. 

Treatment 
trajectory 

10% never get treatment 
31.5% partial suppression after treatment initiation 
58.5% full suppression after treatment initiation 
Multiple sources (see text). 

Time until peak of 
acute viremia 

21 days 
Little (1999) 

Peak viremia 6.886 (in log10 copies per ml) 
Little (1999) 

Time from peak 
viremia until set 
point 

19 days 
Little (1999) 

Set point 4.5 (in log10 copies per ml) 
Little (1999) 

Time from onset of 
set point until AIDS-
related viral 
increase 

3610 days (for a total of 3650 days = 10 years until inset of AIDS) 
Buchbinder et al. 200x.  

Time from onset of 
until AIDS-related 
viral increase until 
death 

730 days (2 years); total survival with HIV without treatment is thus 12 years 
Buchbinder et al. 200x. 
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slope of viral load 
during AIDS 

.003425 log10 copies per ml per day 
This implies a viral load of 7.0 at death 

Viral load at full 
suppression 

1.5 (in log10 copies per ml) 
Definitional. 

mean viral load for 
those partially 
suppressed 

3.5 (in log10 copies per ml) 
Chu et al. 2010 

Time until partial 
suppression escape 

365*13 days from infection 
Chu et al. 2010 

partial.escape.slope
  

.003425 log10 copies per ml per day  
Chu et al. 2010 

treatment initiation Swindells et al. 2002. see text 
Prevalence of full 
suppression among 
those on treatment 
 

For suppression, we have two very highly concordant estimates.  In HOPS, 74% 
of men who have consistently been on HAART for at least six  months show full 
suppression.  For Chu et al. (2010) the figure is 75%.   
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FIGURE 1 
 

Daily age-specific non-AIDS mortality rate by age
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Source: CDC National Vital Statistics Reports Volume 56, Number 9 and National Vital Statistics Reports 
Volume 58, Number 8. See Table 1. 
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FIGURE 2. HIV prevalence over the fifty years of the simulation, for ten runs. 
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FIGURE 3: Distribution of transmission events by five variables  
 

 

 

 



CONFERENCE DRAFT – NOT READY FOR PUBLICATION. PLEASE DO NOT CITE WITHOUT PERMISSION 
 

20 / 21 

FIGURE 4 
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FIGURE 5. HIV prevalence by race/ethnicity 

 
 


