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Abstract

Background. The genetic studies of human life span producedireeersial results. The effects
of a number of genes on longevity are confirmedgame studies and are not manifested in
others. None of the connections resulting fromgeeome wide association studies (GWAS) of
longevity achieved genome-wide significance leisw approaches are needed to evaluate the
roles of genetic factors in longevity from avaikalolata.

Method. In this paper we investigate joint influence ofe Ispan of a set of genetic variants
individually selected in GWAS of life span usingaRtringham Heart Study data. We use bio-
demographic models to investigate possible mechemisvhich are likely to be involved in
regulating differences in survival patterns in greuof individuals with different genetic
background and at different time points.

Results. We show that difference in genetic background amgnogips of individuals from the
same cohort generates differences in survival/rityrtaurves resembling those observed during
survival/mortality improvement in developed couesrin the last century.

Conclusion. Observed similarity in patterns of survival changesesponse to radically different
factors indicates the presence of important systémalogical mechanisms involved in life span
regulation. Although these mechanisms could beewfit for different stimuli their functional
roles could be similar.

| ntroduction

The genome wide association studies (GWAS) of cemphits have been developed to perform
intensive analyses of genetic influence on sudkstréhese studies helped identifyndreds of
genetic variants and provided valuable informatidaout their roles in such traits (Hardy and
Singleton, 2009). Despite this evident progrélse,approach did not entirely meet expectations
of many researchers$lost genetic variants identified so far confer tiglly small effects on
risks of health disorders and life span. Many ofeded effects remain below the levels of
statistical significance established to correct igults for multiple comparisons. Such small-
effects-low-significance single-nucleotide polymorphismS{P) alleles were traditionally
excluded from further analyses. The small contrdyutof selected SNP alleles into traits’
variability generated debates about “missing hieilitg” (Hardy and Singleton, 2009; Mabher,
2008; Manolio et al., 2009; Slatkin, 2009; Vissckeal., 2008)The use of data from the whole
genome scan and the intensive search for rareesllghs been suggested as an alternative to
existing GWA approaches. However, the genetic ttatpopulation of appropriate size and with
such level of genetic details are not yet availébitehe researchers.

The GWAS of human longevity share all the limitagadiscussed above. The candidate
genes approaches used in genetic association stfdiengevity resulted in finding a number of
genes whose connection to long life can also becegsd with the roles they play in metabolic
pathways. The effects of a humber of such genes veplicated in some independent studies
(Anselmi et al., 2009; Flachsbart et al., 2009; |¥gk et al., 2008; Zeng et al.,, 2010).



Surprisingly, these genes did not show significfect in the genome wide association studies
of human longevity (Lunetta et al., 2007; Newmaalgt2010).

Lunetta et al. (2007) performed GWAS using gendéta on 100K SNPs collected for
participants of the original and offspring cohoofsFramingham Heart Study (FHS). The Cox
proportional hazards model was used to generatengale residuals to perform the regression
analysis of survival times from age at study emdrpage at death. Models were sex-specific and
adjusted for a number of observed covariates imatudbirth cohorts, behavioral, and
physiological characteristics. Residuals from @i cohort and offspring participants were
pooled. The authors concluded that longevity andgagaits are associated with SNPs on the
Affymetrix 100K GeneChip. However none of the asations achieved genome-wide
significance.

Newman et al. (2010) performed a meta-analysis WAS in Caucasians from four
prospective cohort studies. The authors found 2MB &ssociations witp < .0001, but none
reached the prespecified significance level of BE¥he authors concluded that survival studies
of larger size or more extreme or specific phenesymay support or refine these initial findings.
Using top 24 alleles, the authors conducted a paghamalysis with the Database for Annotation,
Visualization and Integrated Discovdritp://david.abcc.ncifcrf.goy/

In Yashin et al. (2010b), we found that small-effileev-significance genetic variants,
individually selected using methods of GWAS, mamiily influence life span. This influence
was substantial and highly statistically significahhe evaluated relationship between genetic
dose and life span response explained 21% of |p@n's variance. The relationship was
replicated using data on an independent populaliba.set of selected genetic variants was able
to predict a similar relationship in the other plapion. In this paper we evaluate age patterns of
survival for the subgroups of individuals havindfelient numbers of longevity SNPs in their
genomes. We show that survival functions in thegsmlps differ substantially, and the
dependence of such patterns on the number of respeSNP alleles follows regularities
detected in the analyses of age patterns of sumiyaovement during the last century.

Data

We used data on life spans of 1173 deceased in@ilddrom the original FHS cohort, as well as
data on 550000 SNPs collected for these individUdis detailed description of the Framingham
Heart Study and the FHS genome-wide genotyping databe found on the dbGaP website
(phs000007.v3.p2)

Methods

We use the set of 39 longevity alleles selectetYashin et al. (2010b) to evaluate the joint
influence of the subsets of genetic variants orvigak in the groups of study participants
carrying respective subsets in their genomes. Westoacted an index measuring additive
genetic component of life span, as well as othelices capable of representing the joint
influence of subsets of genetic variants on sutviVaen we fitted the Gompertz-Makeham
model to mortality data in respective sub-cohord eompare obtained estimates and respective
survival functions. Then we used Strehler and Milu\{Strehler and Mildvan, 1960) mortality
model (the SM model) to evaluate which parametérthie model can be affected by genetic
factors.



Index for measuring additive genetic contribution to life span. There is no need to argue
about importance of studying the additive genetimponent of phenotypic traits. Evolutionary
models of phenotypic traits, theoretical principtégjuantitative genetics, breeding experiments,
as well as many other aspects related to transnissi genetic effects through generations
involve this notion. In the pre-genomic era theffeats of additive genetic components of
phenotypic traits were estimated indirectly usirgadon related individuals. The availability of
genome wide data nowadays allows for direct evaloaif respective effects. To do this, denote

by B the set of 39SN\P-alleles (i.e., SNR [ Bif selected in the allele selection procedure in
Yashin et al. (2010b), and l,étbe the effect size oBNR, i= 1, 2,..., 39, estimated in this
procedure. Denote W [ Bthe subset oB consisting ofSNP-alleles contained in the genome

of j™ individual, j=1, 2,..., 1173 The additive genetic component of life sparj'dfndividual
G, can be represented as a weighted sum of indidgt8%& [1B,), SNP B, with normalized

weights ,[A)’i/z:ll,[g’k :

Gi ZZiDB('[}i/ZkDBﬁk)l (SNR a Bj) 1)

This function is sometimes called “genetic or gemoiscore function” (Meigs et al., 2008;
Paynter et al., 2010; Reeves et al., 2010; Rua.e009; Talmud et al., 2010). Thus, by the
definition of the additive genetic component, kfean of ™ individual can be represented as

LS, =a, +a,G, +E; (2)

Here E,is the environmental component of life span withozenean valueThe functionG; is
constructed from genetic data, and is considerednasbserved covariate. Parametgtand
a,have to be estimated from the data. The percemghehotypic variance explained by the

estimated relationshi|d;§j =a,+aG, can be used as the measure of goodness of fit.

Note that the values of the effect sizes for intlingl alleles are never known exactly.

Their estimates as well @svalues of these estimates may substantially departtie statistical

model describing connection between the genetianband the phenotype of interest, and used
in the allele selection procedure. This statemexs checked by selecting longevity alleles using
the Cox, logistic and linear regressions, the GE&had, and the mixed effects models in the
allele selection procedure. The use of these methexllted in different sets 8NP-alleles and

in different estimates of the effect sizesdlP-alleles from the overlapping sets. Therefore, the
values of genetic scores, the estimatesgdnd a, as well as percents of explained phenotypic

variance characterizing genetic contribution te 8pan also differed from one model to the next.
The dependence of the results of analyses on thieocheised in the allele selection procedure
may jeopardize interpretation of the research te;albout the strength of genetic influence on
the trait. To avoid the uncertainty associated wlifferent relative values of the estimates of the

effects sizes, the values ¢Aifwere assumed to be about the sa,&le ,@k for eachS\P-allele
from the overlapping set of such alleles producegdiifferent methods. In this case, the genetic
score function fof™ individual becomes proportional o = st' (SNROB,), i.e., the number



of SNP-alleles, contained in his/her genome. So, lifenspi™ individual can be represented as
the function of the proportion of the genetic vatsan, = Nj/N contained in his/her genome:

LS, =a,+an, +E, 3)

The comparison of the percents of phenotypic vagaxplained by representations (2) and (3)
showed that these values are about 19% in bo#scas

Note that the joint influence of genetic varianae risk of disease has been tested in
several other studies using an aggregated indéedcajenetic or genomic score" (Meigs et al.,
2008; Paynter et al., 2010; Reeves et al., 201, &ual., 2009; Talmud et al., 2010). The fact
that these researchers combined genetic variariextdd in different studies and often in
different populations may produce misleading resulhen genes affecting respective traits are
sensitive to external conditions. Moreover, then&e& score” function in these publications
often included only alleles whose effects on tleet twere statistically significant. No one of
these studies addressed the critical issue thigrelit statistical methods of allele selection will
result in different sets of SNP alleles. It is clélaat more work is needed to properly select
influential alleles and evaluate regularities d@ithoint influence on health related traits.

Regularities of genetic influence on survival. Fig. 1 (upper panel) illustrates two patterns of
survival improvement observed in developed cousiiering the 2% century. The results of our
studies of genetic influence on life span usingadadm the original FHS cohort showed that
dependence of survival curve on the number of minagevity alleles (i.e., alleles, having
positive effects on survival) contained in the gaes of individuals from respective sub-cohorts
follows similar patterns (Fig.1, bottom panel). ®hthe number of longevity alleles, contained
in individuals’ genomes, varies from the total nienb of such alleles to 22, respective changes
in survival functions in the sub-cohorts of indivads with such differences in genetic
background follow the rectangularization patterrhaff the number of such alleles contained in
persons’ genomes increases, the changes in sufui@lons in respective population subgroups
show a pattern resembling almost a parallel shithe entire survival curve to the right (Fig. 1,
bottom panel).

Fig. 1 is about here

One more striking similarity is between an almase#&r increase of average life span as a
function of the number of longevity alleles (Yasleinal., 2010b) and a linear increase in the life
expectancy at birth over time (Oeppen and Vaup@2® Fig. 2 shows an increase in average
life span for groups of individuals whose numbetasfgevity alleles varies from 0 to 39 (upper
panel) and an increase in life expectancy at loiatised by improvements in external conditions
(bottom panel).

Fig. 2 is about here

What mechanisms might be responsible for such aiityl in survival and life expectancy
changes caused by two evidently different reasons?

Strehler and Mildvan correlation. More than 50 years ago the Science magazine peblithe
seminal paper by Strehler and Mildvan (1960), iniclwhthe Gompertz mortality rate



U(X) =aexppx) was represented as a result of interplay betwetaral disturbances (stresses

of life) and the decline in the “vitality” variabldescribing individuals’ resistance to stresses.
The model explained striking regularity detected&amparison of the Gompertz mortality rates
in different populations: the parametersandb of this curve were not changing independently
from one population to the next, as one could exgaa showed strong negative correlation,
later called the Strehler and Mildvan (SM) cornelat This model was applied to explaining
differences in mortality rates among different plagions (Gavrilov and Gavrilova, 1991;
Strehler and Mildvan, 1960); differences in mottatates in the same country at different time
periods, or in subsequent sub-cohorts (Yashin.e@D1; 2002), as well as in cause specific
mortality rates (Riggs and Millecchia, 1992).

Fig. 3 shows logarithms of the Gompertz mortalintes evaluated for groups of
individuals having different numbers of longevitietes in their genomes (upper panel).

Fig. 3 is about here

One can see that the pattern of changes is tyfocakctangularization of survival curves. The
mortality rate for non-genotyped population is laghthan that in any sub-cohort of the
genotyped population. The SM-correlation diagranotton panel in Fig.3) shows clear
correlation pattern between the Gompertz paraméteasandb. Note that the values of these
parameters for the non-genotyped individuals acatkd in the right bottom part of this diagram.
One can use this diagram to predict that most Jlikekmber of longevity alleles in non-
genotyped individuals is about zero. The evaluatibdependence of life span on the number of
“longevity” alleles contained in individuals’ gen@s may shed more light on genetic nature of
this trait.

How SM model explains observed patterns in survival improvement over time. One of the
key variables in the SM model is “vitality¥/(x), wherex denotes individuals' age. The decline
in vitality with age is described by a linear funct and interpreted as aging associated reduction
in capacity to withstand stresses:

V(X) =V, (1-Bx) (4)

The external disturbances are described by thes®wike stochastic process, which is
characterized by two parameters: the frequeKgyand the average magnitude of stressEs,
respectively (here we follow the original notatioy Strehler and Mildvan). The functidf(x) is
characterized by the intercept, or initial valuetlut index,Vy, and the slopey,B. The model
represents parameters of the Gompertz mortalityequix) = aexp@x) (describing the typical

pattern of human mortality rates between ages 8®Baryears) in terms &, B, K, andsD:
a=Kexp(-V,/eD); b=V,B/eD. (5)

In the framework of the SM model the observed mgtdarization pattern of survival
improvement over time (upper panel in Fig. 1) candxplained by the decline in average
magnitude of external stresseB, The parallel shift of the entire survival cureethe right over

time (the same panel in Fig. 1) can be explainedhieydecline in the frequency of external
disturbancesK. This is becauseD, andK are the only parameters characterizing propedies
external disturbances. Changes/gnandB are not expected, because these parameters represen
properties of individual genetic background, sigpaifit changes of which require evolutionary
time.



How SM model explains differences in survival for groups of individuals with different
genetic background. Note that explanations given above are no longdidfor the patterns
shown in the bottom panel of Fig. 1. This is beeamstead of considering of how changes in
external conditions over time influence human swalviwe consider how such survival is
affected by differences in genetic parameters dfviduals taken from the same population
cohort (original FHS cohort), and exposed to thmesaxternal conditions. Therefore, different
age patterns of survival (mortality rates) for #hesib-cohorts are likely to be associated with
differences in parametek andB of the vitality function,V(x), which are likely to depend on
the genetic backgrounds of individuals from respecsub-cohorts. The analyses of parameters
of the Gompertz mortality curve given by (2) togathvith the spectrum of survival functions
shown in the bottom panel of Fig. 1 indicate thed tectangularization pattern of changes in
survival, in this case, can be observed if thedhitalue of vitality,Vo, increases with the decline
in the number of longevity alleles contained iniwnduals’ genomes. In populations with such
genetic background, the paramdBeremains unchanged, so the rate of vitality dedlleich is
characterized by the produdB) increases. As we mentioned earlier, such a pattechanges

in survival takes place in the groups of study ipgrants when the number of longevity alleles
varies from 0 to 22 (Fig. 1, bottom panel). The @tparallel shift in the entire survival curve to
the right (Fig. 1, bottom panel) with further inase in the number of longevity alleles in
genomes of individuals from respective sub-cohootsld be obtained by simultaneous changes
in parameterd/p and B but in opposite directions, so that the initiatality, Vo, continues to
increase, but the slop¥,B, of the vitality curve remains the same.

This connection between genetic changes and matidits of the hypothetical vitality
curve, estimated from the real data, indicates tttainges in the genetic background of
individuals may affect dynamic parameters of agiatated changes in physiological indices
measured in longitudinal data. The use of the SMehshows what types of effects on dynamic
parameters of the age trajectories of physiologiwdices can be expected (e.g., improvement in
survival may take place with and without changestha rate of aging-related changes in
respective biomarkers) when the genetic backgrowidgespective individuals change. Better
understanding of the roles of such genetic fadtotsomarkers of aging may also shed light on
the role of gene-environment interaction in thevstal changes over time (upper panel in Fig.
1). The new environmental conditions may activae igenes, which may modulate parameters
of vitality curve.

Discussion

The presence of SM correlation in the Gompertz mpaetars is associated with the
“rectangularization” pattern of survival improveneso called the “compression of mortality”
(Myers and Manton, 1984). Respective decline intality rate can be represented by counter
clock-wise rotation of the logarithms of respectivertality rates around some point, so the
parametera declined and the parametérincreased. The insights about possible biological
mechanisms responsible for such patterns of charmyede gained by comparing these curves
with those resulting from the model of “saving BigVaupel and Yashin, 1987; Yashin et al.,
2000), where the rectangularization pattern of isahchanges corresponds to an increase in the
number of times “individuals’ lives have been saVetbaving lives” can be achieved by
providing living organisms with necessary resilienaedundancy, and robustness, which
increases their ability to withstand stressess linteresting that analyses of data factors and
conditions experienced by centenarians broughtarebers to the same conclusion: Resilience



makes substantial contribution to exceptional laitgen humans (Zeng and Shen, 2010).

Demographers studying trends in mortality and isaivin developed countries paid
attention to the fact the concept of “mortality quession” became no longer valid in the second
part of the last century. Myers and Manton (198#ught evidence that at the second part of the
20" century the tail of survival curve in the Uniteth®s has a tendency to increase with years.
Horiuchi and Wilmoth (1997; 1998) confirmed an mase of the tail of life span distribution in
the population of the United States. Wilmoth andritdzhi (1999) found that the decline in
variability of life span, associated with the rewalarization pattern of changes in survival
curves ended up around 1950 in Sweden and UnitddsStThese evidences were summarized in
the papers by Yashin et al. (2001; 2002) which ébtivat the process of “rectangularization” of
the survival curve, which took place in the firstfrof the last century, was later replaced by an
almost parallel shift of the entire survival cuteethe right (Fig. 1, upper panel). It was cleatth
human survival improves in response to changeswirenmental and living conditions, which
include ameliorations in health care and medicatioHowever, factors and mechanisms
responsible for such an improvement remained poaniyerstood. The analyses performed in
this paper indicate that observed differences mrigal (mortality) curves can be generated by
modulating individual resistance to stresses. Ingmily, such modulation can be done by
genetic factors, and, what is even more importaytfavorable changes in external conditions.
An increase in individual resilience by providindeguate medical help and health care facilities
in critical situations is likely to make an impantacontribution to exceptional life span.

Thus the use of the SM model in the analyses oétgedata shows that genetic factors
may modify values and dynamic properties of vagaldescribing aging related transformations
in the human body, and these modifications infleelife span. In Yashin et al. (2006) we found
associations between values of physiological irel@eages between 40 and 60 years and life
span. Extending these analyses (Yashin et al.,8048 also found that not only values of these
variables, but also their dynamic characteristasg, associated with life span, and healthy life
span. These findings together with the insightsnftbe SM analyses suggest that at least some
of the detected associations may be caused byotht ipfluence of the number of genetic
variants individually selected for their effects lo@alth and survival outcomes.

The observed patterns in survival/mortality chanigage important interpretation from
the reliability theory point of view. Indeed, tharpllel shift of the mortality curve to the right
corresponds to proportional modification of respechazard rate. Such changes are expected
when in the series connection Mfsub-systems with similar age patterns of hazamkrahe or
several systems became invulnerable (e.g., by girmyithem with high levels of redundancy, or
repair capacity). The rectangularization (mortaligpunter clock-wise rotation) pattern
corresponds to providing a limited redundancy {nited additional repair capacity) to one or
more subsystems. This analogy stimulates systeniedyi approaches to studying aging and
longevity with identifications of respective systenblocks, connections, mechanisms and
capacities for reservation and repair at diffetemnels of organism’s biological organization.

Note that even if the differences in survival fuans/mortality rates in the two panels in
Fig. 1 look similar, the mechanisms responsible tftegem are not necessarily the same. An
improvement in survival over time involves influenof advancing health care and medical
technology (e.g., proper access to emergency oapantation of pacemakers, performing by-
pass surgery, etc.), which could extend life withaffiecting genetic mechanisms, for example
by increasing reliability of functioning in certamological organs, or subsystems. An important



finding of this study is that selected genetic &ats may jointly influence reliability of
biological subsystems, and that this influence ddpeon the number of respective genetic
variants contained in genomes of respective indafisl
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Probability of death of carriers of different number of minor longevity alleles
FHS original cohort, 39 SNPs, Gompertz model
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Fig. 1. Upper panel: Two patterns of survival improvement for femalasSwitzerland (data
source: Human Mortality Databasdjottom panel: Two patterns of changes in survival of
carriers of different number of longevity allelestected in our GWAS of the original FHS
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Prediction of lifespan of 1173 individuals of original cohort
39 longevity SNPs selected based on linear regression model
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Fig. 22 Upper Panel: The “genetic dose — phenotypic response” relatipndtetween the
numbers of selected “longevity” alleles (39 totntained in individuals’ genome and mean life
span of individuals carrying a given number of levity SNPs in their genomes (analyses of
500K SNP data, original FHS cohort). Dots represeat data, dashed line represents respective
linear regression. Longevity alleles were seleaisthg a linear regression procedure, which
involved comparison of characteristics of life smhstributions among carriers and non-carriers
of each of 500K genetic variant8ottom Panel: life expectancy at birth in Australia, females,
1921-2004 (data source: Human Mortality Database).
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