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Abstract 

Background. The genetic studies of human life span produced controversial results. The effects 
of a number of genes on longevity are confirmed in some studies and are not manifested in 
others. None of the connections resulting from the genome wide association studies (GWAS) of 
longevity achieved genome-wide significance level. New approaches are needed to evaluate the 
roles of genetic factors in longevity from available data.  
Method. In this paper we investigate joint influence on life span of a set of genetic variants 
individually selected in GWAS of life span using Framingham Heart Study data. We use bio-
demographic models to investigate possible mechanisms, which are likely to be involved in 
regulating differences in survival patterns in groups of individuals with different genetic 
background and at different time points.  
Results. We show that difference in genetic background among groups of individuals from the 
same cohort generates differences in survival/mortality curves resembling those observed during 
survival/mortality improvement in developed countries in the last century.  
Conclusion. Observed similarity in patterns of survival changes in response to radically different 
factors indicates the presence of important systemic biological mechanisms involved in life span 
regulation. Although these mechanisms could be different for different stimuli their functional 
roles could be similar.  
 
Introduction 

The genome wide association studies (GWAS) of complex traits have been developed to perform 
intensive analyses of genetic influence on such traits. These studies helped identify hundreds of 
genetic variants and provided valuable information about their roles in such traits (Hardy and 
Singleton, 2009). Despite this evident progress, the approach did not entirely meet expectations 
of many researchers. Most genetic variants identified so far confer relatively small effects on 
risks of health disorders and life span. Many of detected effects remain below the levels of 
statistical significance established to correct the results for multiple comparisons. Such small-
effects-low-significance single-nucleotide polymorphism (SNP) alleles were traditionally 
excluded from further analyses. The small contribution of selected SNP alleles into traits’ 
variability generated debates about “missing heritability” (Hardy and Singleton, 2009; Maher, 
2008; Manolio et al., 2009; Slatkin, 2009; Visscher et al., 2008). The use of data from the whole 
genome scan and the intensive search for rare alleles has been suggested as an alternative to 
existing GWA approaches. However, the genetic data for population of appropriate size and with 
such level of genetic details are not yet available for the researchers.  

The GWAS of human longevity share all the limitations discussed above. The candidate 
genes approaches used in genetic association studies of longevity resulted in finding a number of 
genes whose connection to long life can also be associated with the roles they play in metabolic 
pathways. The effects of a number of such genes were replicated in some independent studies 
(Anselmi et al., 2009; Flachsbart et al., 2009; Willcox et al., 2008; Zeng et al., 2010). 



Surprisingly, these genes did not show significant effect in the genome wide association studies 
of human longevity (Lunetta et al., 2007; Newman et al., 2010).  

Lunetta et al. (2007) performed GWAS using genetic data on 100K SNPs collected for 
participants of the original and offspring cohorts of Framingham Heart Study (FHS). The Cox 
proportional hazards model was used to generate martingale residuals to perform the regression 
analysis of survival times from age at study entry to age at death. Models were sex-specific and 
adjusted for a number of observed covariates including birth cohorts, behavioral, and 
physiological characteristics. Residuals from original cohort and offspring participants were 
pooled. The authors concluded that longevity and aging traits are associated with SNPs on the 
Affymetrix 100K GeneChip. However none of the associations achieved genome-wide 
significance.  

Newman et al. (2010) performed a meta-analysis of GWAS in Caucasians from four 
prospective cohort studies. The authors found 273 SNP associations with p < .0001, but none 
reached the prespecified significance level of 5E-08. The authors concluded that survival studies 
of larger size or more extreme or specific phenotypes may support or refine these initial findings. 
Using top 24 alleles, the authors conducted a pathway analysis with the Database for Annotation, 
Visualization and Integrated Discovery http://david.abcc.ncifcrf.gov/).  

In Yashin et al. (2010b), we found that small-effect-low-significance genetic variants, 
individually selected using methods of GWAS, may jointly influence life span. This influence 
was substantial and highly statistically significant. The evaluated relationship between genetic 
dose and life span response explained 21% of life span's variance. The relationship was 
replicated using data on an independent population. The set of selected genetic variants was able 
to predict a similar relationship in the other population. In this paper we evaluate age patterns of 
survival for the subgroups of individuals having different numbers of longevity SNPs in their 
genomes. We show that survival functions in the subgroups differ substantially, and the 
dependence of such patterns on the number of respective SNP alleles follows regularities 
detected in the analyses of age patterns of survival improvement during the last century.  

Data 

We used data on life spans of 1173 deceased individuals from the original FHS cohort, as well as 
data on 550000 SNPs collected for these individuals. The detailed description of the Framingham 
Heart Study and the FHS genome-wide genotyping data can be found on the dbGaP website 
(phs000007.v3.p2) 

Methods 

We use the set of 39 longevity alleles selected in Yashin et al. (2010b) to evaluate the joint 
influence of the subsets of genetic variants on survival in the groups of study participants 
carrying respective subsets in their genomes. We constructed an index measuring additive 
genetic component of life span, as well as other indices capable of representing the joint 
influence of subsets of genetic variants on survival. Then we fitted the Gompertz-Makeham 
model to mortality data in respective sub-cohorts and compare obtained estimates and respective 
survival functions. Then we used Strehler and Mildvan (Strehler and Mildvan, 1960) mortality 
model (the SM model) to evaluate which parameters of this model can be affected by genetic 
factors.  



Index for measuring additive genetic contribution to life span.  There is no need to argue 
about importance of studying the additive genetic component of phenotypic traits. Evolutionary 
models of phenotypic traits, theoretical principles of quantitative genetics, breeding experiments, 
as well as many other aspects related to transmission of genetic effects through generations 
involve this notion. In the pre-genomic era these effects of additive genetic components of 
phenotypic traits were estimated indirectly using data on related individuals. The availability of 
genome wide data nowadays allows for direct evaluation of respective effects. To do this, denote 
by B the set of 39 SNP-alleles (i.e., iSNP B∈ if selected in the allele selection procedure in 

Yashin et al. (2010b), and letîβ be the effect size of iSNP , i= 1, 2,…, 39, estimated in this 

procedure. Denote byjB B⊆ the subset of B consisting of SNP-alleles contained in the genome 

of jth individual, j=1, 2,…, 1173. The additive genetic component of life span of jth individual 

jG can be represented as a weighted sum of indicators( )i jI SNP B∈ , ,iSNP B∈  with normalized 

weights
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This function is sometimes called “genetic or genomic score function” (Meigs et al., 2008; 
Paynter et al., 2010; Reeves et al., 2010; Ruiz et al., 2009; Talmud et al., 2010). Thus, by the 
definition of the additive genetic component, life span of jth individual can be represented as  

0 1j j jLS G Eα α= + +                                                      (2) 

Here jE is the environmental component of life span with zero mean value. The function jG is 

constructed from genetic data, and is considered as an observed covariate. Parameters0α and 

1α have to be estimated from the data. The percent of phenotypic variance explained by the 

estimated relationship: 0 1
ˆ ˆ ˆ

j jLS Gα α= + can be used as the measure of goodness of fit.  

Note that the values of the effect sizes for individual alleles are never known exactly. 
Their estimates as well as p-values of these estimates may substantially depend on the statistical 
model describing connection between the genetic variant and the phenotype of interest, and used 
in the allele selection procedure.  This statement was checked by selecting longevity alleles using 
the Cox, logistic and linear regressions, the GEE method, and the mixed effects models in the 
allele selection procedure. The use of these methods resulted in different sets of SNP-alleles and 
in different estimates of the effect sizes of SNP-alleles from the overlapping sets.  Therefore, the 
values of genetic scores, the estimates of 0α and 1α  as well as percents of explained phenotypic 

variance characterizing genetic contribution to life span also differed from one model to the next. 
The dependence of the results of analyses on the method used in the allele selection procedure 
may jeopardize interpretation of the research results about the strength of genetic influence on 
the trait. To avoid the uncertainty associated with different relative values of the estimates of the 

effects sizes, the values of îβ were assumed to be about the same ˆ ˆ
i kβ β≈   for each SNP-allele 

from the overlapping set of such alleles produced by different methods. In this case, the genetic 

score function for jth individual becomes proportional to ( )j i ji B
N I SNP B

∈
= ∈∑ , i.e., the number 



of SNP-alleles, contained in his/her genome. So, life span of jth individual can be represented as 
the function of the proportion of the genetic variants j jn N N= contained in his/her genome:  

0 1j j jLS n Eα α= + +                                                                        (3) 

The comparison of the percents of phenotypic variance explained by representations (2) and (3) 
showed that these values are about 19%  in both cases.  

Note that the joint influence of genetic variance on risk of disease has been tested in 
several other studies using an aggregated index called "genetic or genomic score" (Meigs et al., 
2008; Paynter et al., 2010; Reeves et al., 2010; Ruiz et al., 2009; Talmud et al., 2010). The fact 
that these researchers combined genetic variants detected in different studies and often in 
different populations may produce misleading results when genes affecting respective traits are 
sensitive to external conditions. Moreover, the "genetic score" function in these publications 
often included only alleles whose effects on the trait were statistically significant. No one of 
these studies addressed the critical issue that different statistical methods of allele selection will 
result in different sets of SNP alleles. It is clear that more work is needed to properly select 
influential alleles and evaluate regularities of their joint influence on health related traits.  

Regularities of genetic influence on survival. Fig. 1 (upper panel) illustrates two patterns of 
survival improvement observed in developed countries during the 21st century. The results of our 
studies of genetic influence on life span using data from the original FHS cohort showed that 
dependence of survival curve on the number of minor longevity alleles (i.e., alleles, having 
positive effects on survival) contained in the genomes of individuals from respective sub-cohorts 
follows similar patterns (Fig.1, bottom panel).  When the number of longevity alleles, contained 
in individuals’ genomes, varies from the total number 0 of such alleles to 22, respective changes 
in survival functions in the sub-cohorts of individuals with such differences in genetic 
background follow the rectangularization pattern. When the number of such alleles contained in 
persons’ genomes increases, the changes in survival functions in respective population subgroups 
show a pattern resembling almost a parallel shift of the entire survival curve to the right (Fig. 1, 
bottom panel).  

Fig. 1 is about here 

One more striking similarity is between an almost linear increase of average life span as a 
function of the number of longevity alleles (Yashin et al., 2010b) and a linear increase in the life 
expectancy at birth over time (Oeppen and Vaupel, 2002). Fig. 2 shows an increase in average 
life span for groups of individuals whose number of longevity alleles varies from 0 to 39 (upper 
panel) and an increase in life expectancy at birth caused by improvements in external conditions 
(bottom panel). 

Fig. 2 is about here 

What mechanisms might be responsible for such similarity in survival and life expectancy 
changes caused by two evidently different reasons? 

Strehler and Mildvan correlation. More than 50 years ago the Science magazine published the 
seminal paper by Strehler and Mildvan (1960), in which the Gompertz mortality rate 



)exp()( bxax =µ  was represented as a result of interplay between external disturbances (stresses 
of life) and the decline in the “vitality” variable describing individuals’ resistance to stresses. 
The model explained striking regularity detected in comparison of the Gompertz mortality rates 
in different populations: the parameters a and b of this curve were not changing independently 
from one population to the next, as one could expect, but showed strong negative correlation, 
later called the Strehler and Mildvan (SM) correlation. This model was applied to explaining 
differences in mortality rates among different populations (Gavrilov and Gavrilova, 1991; 
Strehler and Mildvan, 1960); differences in mortality rates in the same country at different time 
periods, or in subsequent sub-cohorts (Yashin et al., 2001; 2002), as well as in cause specific 
mortality rates (Riggs and Millecchia, 1992).  

Fig. 3 shows logarithms of the Gompertz mortality rates evaluated for groups of 
individuals having different numbers of longevity alleles in their genomes (upper panel).  

Fig. 3 is about here 

One can see that the pattern of changes is typical for rectangularization of survival curves. The 
mortality rate for non-genotyped population is higher than that in any sub-cohort of the 
genotyped population. The SM-correlation diagram (bottom panel in Fig.3) shows clear 
correlation pattern between the Gompertz parameters ln a and b. Note that the values of these 
parameters for the non-genotyped individuals are located in the right bottom part of this diagram. 
One can use this diagram to predict that most likely number of longevity alleles in non-
genotyped individuals is about zero. The evaluation of dependence of life span on the number of 
“longevity” alleles contained in individuals’ genomes may shed more light on genetic nature of 
this trait. 

How SM model explains observed patterns in survival improvement over time. One of the 
key variables in the SM model is “vitality”, V(x), where x denotes individuals' age. The decline 
in vitality with age is described by a linear function and interpreted as aging associated reduction 
in capacity to withstand stresses: 

)1()( 0 BxVxV −=                                                              (4) 

The external disturbances are described by the Poisson-like stochastic process, which is 
characterized by two parameters: the frequency, K, and the average magnitude of stresses, ɛD, 
respectively (here we follow the original notation by Strehler and Mildvan). The function V(x) is 
characterized by the intercept, or initial value of this index, V0, and the slope, V0B. The model 
represents parameters of the Gompertz mortality curve )exp()( bxax =µ (describing the typical 

pattern of human mortality rates between ages 30 and 85 years) in terms of V0, B, K, and ɛD:  

)exp( 0 DVKa ε−= ;      DBVb ε0= .                                               (5) 

In the framework of the SM model the observed rectangularization pattern of survival 
improvement over time (upper panel in Fig. 1) can be explained by the decline in average 
magnitude of external stresses, ɛD. The parallel shift of the entire survival curve to the right over 
time (the same panel in Fig. 1) can be explained by the decline in the frequency of external 
disturbances, K. This is because ɛD, and K are the only parameters characterizing properties of 
external disturbances. Changes in V0 and B are not expected, because these parameters represent 
properties of individual genetic background, significant changes of which require evolutionary 
time. 



How SM model explains differences in survival for groups of individuals with different 
genetic background. Note that explanations given above are no longer valid for the patterns 
shown in the bottom panel of Fig. 1. This is because instead of considering of how changes in 
external conditions over time influence human survival we consider how such survival is 
affected by differences in genetic parameters of individuals taken from the same population 
cohort (original FHS cohort), and exposed to the same external conditions. Therefore, different 
age patterns of survival (mortality rates) for these sub-cohorts are likely to be associated with 
differences in parameters V0 and B of the vitality function, V(x), which are likely to depend on 
the genetic backgrounds of individuals from respective sub-cohorts. The analyses of parameters 
of the Gompertz mortality curve given by (2) together with the spectrum of survival functions 
shown in the bottom panel of Fig. 1 indicate that the rectangularization pattern of changes in 
survival, in this case, can be observed if the initial value of vitality, V0, increases with the decline 
in the number of longevity alleles contained in individuals' genomes. In populations with such 
genetic background, the parameter B remains unchanged, so the rate of vitality decline (which is 
characterized by the product, V0B) increases. As we mentioned earlier, such a pattern of changes 
in survival takes place in the groups of study participants when the number of longevity alleles 
varies from 0 to 22 (Fig. 1, bottom panel). The almost parallel shift in the entire survival curve to 
the right (Fig. 1, bottom panel) with further increase in the number of longevity alleles in 
genomes of individuals from respective sub-cohorts could be obtained by simultaneous changes 
in parameters V0 and B but in opposite directions, so that the initial vitality, V0, continues to 
increase, but the slope, V0B, of the vitality curve remains the same.  

This connection between genetic changes and modifications of the hypothetical vitality 
curve, estimated from the real data, indicates that changes in the genetic background of 
individuals may affect dynamic parameters of aging related changes in physiological indices 
measured in longitudinal data. The use of the SM model shows what types of effects on dynamic 
parameters of the age trajectories of physiological indices can be expected (e.g., improvement in 
survival may take place with and without changes in the rate of aging-related changes in 
respective biomarkers) when the genetic backgrounds of respective individuals change. Better 
understanding of the roles of such genetic factors in biomarkers of aging may also shed light on 
the role of gene-environment interaction in the survival changes over time (upper panel in Fig. 
1). The new environmental conditions may activate new genes, which may modulate parameters 
of vitality curve.  

Discussion 

The presence of SM correlation in the Gompertz parameters is associated with the 
“rectangularization” pattern of survival improvement also called the “compression of mortality” 
(Myers and Manton, 1984). Respective decline in mortality rate can be represented by counter 
clock-wise rotation of the logarithms of respective mortality rates around some point, so the 
parameter a  declined and the parameter b increased. The insights about possible biological 
mechanisms responsible for such patterns of changes can be gained by comparing these curves 
with those resulting from the model of “saving lives” (Vaupel and Yashin, 1987; Yashin et al., 
2000), where the rectangularization pattern of survival changes corresponds to an increase in the 
number of times “individuals’ lives have been saved.” “Saving lives” can be achieved by 
providing living organisms with necessary resilience, redundancy, and robustness, which 
increases their ability to withstand stresses. It is interesting that analyses of data factors and 
conditions experienced by centenarians brought researchers to the same conclusion: Resilience 



makes substantial contribution to exceptional longevity in humans (Zeng and Shen, 2010).  

 Demographers studying trends in mortality and survival in developed countries paid 
attention to the fact the concept of “mortality compression” became no longer valid in the second 
part of the last century. Myers and Manton (1984) brought evidence that at the second part of the 
20th century the tail of survival curve in the United States has a tendency to increase with years. 
Horiuchi and Wilmoth (1997; 1998) confirmed an increase of the tail of life span distribution in 
the population of the United States. Wilmoth and Horiuchi (1999) found that the decline in 
variability of life span, associated with the rectangularization pattern of changes in survival 
curves ended up around 1950 in Sweden and United States. These evidences were summarized in 
the papers by Yashin et al. (2001; 2002) which found that the process of “rectangularization” of 
the survival curve, which took place in the first half of the last century, was later replaced by an 
almost parallel shift of the entire survival curve to the right (Fig. 1, upper panel). It was clear that 
human survival improves in response to changes in environmental and living conditions, which 
include ameliorations in health care and medications. However, factors and mechanisms 
responsible for such an improvement remained poorly understood. The analyses performed in 
this paper indicate that observed differences in survival (mortality) curves can be generated by 
modulating individual resistance to stresses. Importantly, such modulation can be done by 
genetic factors, and, what is even more important, by favorable changes in external conditions. 
An increase in individual resilience by providing adequate medical help and health care facilities 
in critical situations is likely to make an important contribution to exceptional life span.  

Thus the use of the SM model in the analyses of genetic data shows that genetic factors 
may modify values and dynamic properties of variables describing aging related transformations 
in the human body, and these modifications influence life span. In Yashin et al. (2006) we found 
associations between values of physiological indices at ages between 40 and 60 years and life 
span. Extending these analyses (Yashin et al., 2010a) we also found that not only values of these 
variables, but also their dynamic characteristics, are associated with life span, and healthy life 
span. These findings together with the insights from the SM analyses suggest that at least some 
of the detected associations may be caused by the joint influence of the number of genetic 
variants individually selected for their effects on health and survival outcomes.  

The observed patterns in survival/mortality changes have important interpretation from 
the reliability theory point of view. Indeed, the parallel shift of the mortality curve to the right 
corresponds to proportional modification of respective hazard rate. Such changes are expected 
when in the series connection of N sub-systems with similar age patterns of hazard rates one or 
several systems became invulnerable (e.g., by providing them with high levels of redundancy, or 
repair capacity). The rectangularization (mortality counter clock-wise rotation) pattern 
corresponds to providing a limited redundancy (or limited additional repair capacity) to one or 
more subsystems. This analogy stimulates systems biology approaches to studying aging and 
longevity with identifications of respective systems blocks, connections, mechanisms and 
capacities for reservation and repair at different levels of organism’s biological organization.   

Note that even if the differences in survival functions/mortality rates in the two panels in 
Fig. 1 look similar, the mechanisms responsible for them are not necessarily the same. An 
improvement in survival over time involves influence of advancing health care and medical 
technology (e.g., proper access to emergency care, implantation of pacemakers, performing by-
pass surgery, etc.), which could extend life without affecting genetic mechanisms, for example 
by increasing reliability of functioning in certain biological organs, or subsystems.  An important 



finding of this study is that selected genetic variants may jointly influence reliability of 
biological subsystems, and that this influence depends on the number of respective genetic 
variants contained in genomes of respective individuals.    
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Figures: 

 

 
Fig. 1: Upper panel: Two patterns of survival improvement for females in Switzerland (data 
source: Human Mortality Database). Bottom panel: Two patterns of changes in survival of 
carriers of different number of longevity alleles detected in our GWAS of the original FHS 
cohort. 



 

 
Fig. 2: Upper Panel: The “genetic dose – phenotypic response” relationship between the 
numbers of selected “longevity” alleles (39 total) contained in individuals’ genome and mean life 
span of individuals carrying a given number of longevity SNPs in their genomes (analyses of 
500K SNP data, original FHS cohort). Dots represent real data, dashed line represents respective 
linear regression. Longevity alleles were selected using a linear regression procedure, which 
involved comparison of characteristics of life span distributions among carriers and non-carriers 
of each of 500K genetic variants. Bottom Panel: life expectancy at birth in Australia, females, 
1921-2004 (data source: Human Mortality Database). 



 

 

Fig. 3: Upper Panel: The logarithms of the estimates of mortality rates approximated by the 
Gompertz curves in the groups of individuals having different numbers of longevity alleles in 
their genomes. Bottom Panel: The Strehler and Mildvan correlation between the Gompertz 
parameters of mortality rates in the groups of individuals having different numbers of longevity 
alleles in their genomes. 


