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Abstract

The impact of public health intervention on children’s wellbeing critically
depends on how individuals mix and the social context in which this mixing
occurs. Many countries lack of data on social mixing patterns, and rely
on theoretical assumptions on population mixing to evaluate interventions.
The aim of this work is to understand how different social interactions af-
fect close-contact childhood infection processes. We propose a model which,
by integrating different data sources (time use data and contact surveys),
obtains mixing matrices that describe the social structure and reproduce
infection profiles. We assume that potentially infectious contacts are pro-
portional to self-reported number of social contacts and/or time of exposure
in social activities. To evaluate the uncertainty of model outputs, we use
the Bayesian Melding approach. We empirically analyze Italian data, where
contact survey, time use data from early ages, and data on close-contact
childhood infections are available.
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1 Introduction

Social mixing patterns are a relevant explanatory factor for the spread of close-
contact infectious diseases (Anderson and May, 1991; Diekmann and Heesterbeek,
2000). The exposure and frequency of contacts between people belonging to dif-
ferent age groups is strongly dependent on demographic and social variables. Pop-
ulation age structure and household size are important demographic determinants
of observed contact patterns. Social structure is another crucial element: for in-
stance, the likelihood of interaction between people of different age groups depends
on norms that influence the location where they spend time (e.g. work, school,
home, restaurant, public transportaton, etc.) and the time slots of the day during
which specific activities take place.

Three main approaches have been suggested in the literature to estimate mix-
ing patterns using social data. A first approach relies on contact surveys in which
the respondent self reports the number of contacts he has during a randomly sam-
pled day, together with some additional information (i.e., age of contacted person,
whether the contact is physical or not, etc.) (Wallinga J., 1999; Edmunds et al.,
1997; Wallinga et al., 2006; Beutels et al., 2006; Mossong et al., 2008). A second
approach relies on micro-simulation: contact and time of exposure matrices are
obtained as output of a simulation informed by secondary data such as transporta-
tion data (Del Valle et al., 2007; Iozzi et al., 2010). A third approach relies on
time use surveys: time of exposure matrices are estimated from time use diaries,
assuming that proportional mixing holds at the level of single location and for
short time slots (Zagheni et al., 2008).

In this paper, we first discuss the role of demographic and social structure in
shaping mixing patterns. We then propose a model that combines information
from time use and contact surveys. To evaluate the uncertainty of model outputs,
we use the Bayesian Melding approach (Poole and Raftery, 2000). Finally, we test
the ability of the model to fit serologic data and we use the model to evaluate the
impact of specific public health interventions.

2 Data

We use data for Italy, for which we have one of the most comprehensive and up-
to-date collections of social data (time use and contact surveys) and serologic data
for varicella zoster virus and parvovirus B19.

Data on time use were collected by the Italian National Statistical Agency
(ISTAT) in 2002-2003 on a sample of about 24 thousand households. Time use data
were collected in the form of diaries in which the respondent records the activities
that he did during the day and the location where the activity took place. We
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decided to study Italy, because it is the only country in Europe that collected time
use data from early ages (age 3), while most of the other countries have diaries
starting from age 10 or 12. This is of extremely importance in our study, given
that the childhood is a crucial period for acquiring the diseases considered.

The contact survey for Italy was collected as part of POLYMOD, a project
funded by the European Union (see Mossong et al., 2008 for details). A sample of
849 respondents were asked to self report the number of contacts they had during a
randomly sampled day, together with some additional information. The survey was
conducted between May 2005 and September 2006. The respondents were recruited
by random digit dialing using land line telephone. One person of the household was
asked to participate and fill paper diaries. Diaries contain also demographic and
socio-economic characteristics of the respondents. Participants had to record every
person they had contact with between 5 a.m. and 5 a.m. of the following day,
in a random day of the week. Contacts were defined as physical contact (skin-
to-skin contact such as a kiss or handshake), or nonphysical contact (two-way
conversation with three or more words in the physical presence of another person
but no skin-to-skin contact). Participants had to provide information about the
age (or age range) and sex of each contact person. For each contact, participants
were asked to record location (home, work, school, leisure, transport, or other),
the total duration of time spent together (less than 5 min, 5–15 min, 15 min to
1 h, 1–4 h, or 4 h or more) as well as the frequency of usual contacts with the
individual (daily or almost daily, about once or twice a week, about once or twice
a month, less than once a month, or for the first time).

The close-contact childhood infections considered are Varicella Zoster Virus
(VZV) and parvovirus B19 (PVB19). Known as human herpes virus type 3, VZV
causes varicella (or chickenpox), and it mainly occurs in childhood. Afterwards
the virus is dormant in the body and may reactivate as herpes zoster (or shingles).
Infection with VZV occurs through direct or aerosol contact with infected people.
An infected person can transmit the virus for about 7 days. We ignore varicella
cases resulting from contact with people who are suffering from zoster virus (Gar-
nett and Grenfell, 1992; Whitaker and Farrington, 2004). Hence, zoster has not
a large impact on transmission dynamics when considering large population with
no immunization program (Ferguson et al., 1996). The first human parvovirus to
be discovered in 1975, PVB19 infection, also known as 5th disease of childhood or
slapped cheek syndrome, causes a mild rash illness (Anderson and Cherry, 2004).
In adults, especially women, it is often complicated by acute arthritis (Cohen,
1995), and during pregnancy it is associated with intrauterine fetal death, fetal
anemia, and hydrops fetalis (Tolfvenstam et al., 2001). Infection with PVB19 oc-
curs through respiratory droplets. An infected person can transmit the virus for
about 14 days. There is no vaccine available for PVB19.
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In a period from 1997 and 2003, Italian serological samples were collected
and tested for antibodies to VZV and PVB19 as part of the European Sero-
Epidemiology Network (ESEN2) (Nardone et al., 2007) and POLYMOD (Mossong
et al., 2008) projects. The sample size is 2517 and the age of participants ranges
from 0 to 79 years. Children under 10 years old were oversampled in each coun-
try. In each country the same individuals were tested for both these infections,
although they were not the same individuals who filled out the contact diaries.
VZV and PVB19 are infections for which mass vaccination program were not in
place in Italy. Therefore the data describe the natural history of the disease.

3 The Model

In epidemiology, a fundamental quantity is the age-specific force of infection (λi),
that is the rate at which susceptible individuals1 in the age group i become infected.
In standard infectious diseases modeling, the force of infection, λi, is proportional
to the transmission rates between and within age groups, βij:

λi =
∑
j

βij × Yj (1)

where Yj is the number of infectives at steady state in age group j. In particular,
Yj are derived by multiplying the proportion of infected by the population size,
wj, and the duration of infectiousness, d, and then dividing by the number of years
spent in that age band (aj is an age band), as follows:

Yj = [S(aj)− S(aj−1)]× wj ×
d

(aj − aj−1)

Here the proportion of susceptible individuals in each age band ai is given by
S(ai) = S(ai−1)× exp{−λi(ai − ai−1)}

Traditionally, the transmission rates, which form the “who-acquires-infection-
from-whom” matrix, are estimated ‘indirectly’ from epidemiological data, under
suitable simplifying assumptions (Anderson and May, 1991). More recently, ‘di-
rect’ approaches have been suggested: the transmission rates matrix is assumed to
be proportional to either a contact matrix or a time of exposure matrix estimated
from sample surveys (Wallinga et al., 2006; Zagheni et al., 2008).

1A susceptible individual (sometimes simply susceptible) is a member of a population who is
at risk of becoming infected if she is exposed to the infectious agent, because he is naive to the
infection or has lost his immunity.
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3.1 Case A

To compare our study with the current literature, we consider as benchmark a
transmission rate matrix proportional to a contact matrix. As in Melegaro et al.
(2011), age-specific transmission parameters are estimated by multiplying each
element of the social contact matrix C by a proportionality factor q which measures
the disease-specific infectivity:

βij = qcij (2)

This generates a “next generation matrix” N :

nij = βij × wj × d (3)

which provides the potential number of transmission events per person.2 Following
Diekmann et al. (1990) and Heesterbeek (1992), we obtain R0, the basic reproduc-
tion number, as the leading eigenvalue of N :

det(N −R0I) = 0 (4)

R0 is the average of the number of transmission events, or the average number
of secondary infectious persons resulting from a single infectious person following
his/her introduction into a totally susceptible population.

Hence, q is the parameter that need to be estimated given the contact matrix
and the proportions of samples testing positive in serological data for VZV and
PVB19.

3.2 Case B

In the case of Italy, we have two independent data sources that give us information
on time of exposure (i.e., time use survey) and number of contacts (i.e., contact
survey). In this paper we propose a new model that combines these two data
sources.

We assume that a fraction q2 of the average time of exposure between groups
i and j, (eij), is suitable for transmission of the disease in terms of proximity of
contact, physical condition of the location of contact, etc. People in the age groups
i and j have a certain number of daily contacts on average, (cij), which differ in
terms of duration. If we assume that a person randomly distributes her/his suitable
minutes for transmission to people she/he has contact with, then some people may
receive more than one suitable minute, whereas some others may not receive any
of them. If the disease is highly transmissible, what matters for transmission
between two people is that they have a contact with at least one suitable minute

2At endemic equilibrium, N determines the force of infection λi as in equation (1).
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of exposure. We call this kind of contact ‘suitable contact’. We do not know
what kind of contacts are ‘suitable’, but we assume that the likelihood that people
experience at least one such contact is positively related to the duration of their
contacts.

Setting up our problem in these terms, we can use some results from classic
probability problems, such as the ‘occupancy problem’3, to obtain the expected
number of suitable contacts between age groups i and j, (uij).

E[uij] = cij(1− e−q2eij/cij ) (5)

If we assume that the age-specific transmission rates are proportional to the
age-specific number of suitable contacts, then, by multiplying the quantity in ex-
pression 5 by a parameter q1 that represents a disease-specific infectivity parame-
ter, we obtain:

βij = q1 × cij(1− e−q2eij/cij ) (6)

The parameters q1 and q2 can be interpreted as ‘level’ and ‘shape’ parameters,
respectively. In this setting, high values of q2 give little importance to the exposure
matrix and more importance to the contact matrix. The level parameter q1 then
rescales the structure of suitable contacts to account for the degree of infectivity
of the disease.

The force of infection can be obtained by plugging equation (6) into equation
(1), while R0 is the eigenvalue of the next generation matrix obtained plugging
equation (6) into equation (3).

The parameters to estimate from serologic, time use, and contact data are q1
and q2. Instead of using a maximum likelihood technique, we adopt the so called
Bayesian Melding approach.

4 Bayesian Melding approach

To estimate the parameters of interest we use the Bayesian Melding approach. The
purpose of this approach is to take into full account information and uncertainty
about inputs and outputs (Poole and Raftery, 2000).4 For our application, the
Bayesian Melding is the following. Consider a deterministic model M that trans-
forms a set of inputs θ into a set of outputs ρ: ρ = M(θ). The knowledge about
the problem under study is translated into probabilistic statements, and hence, in

3A note on the occupancy problem is reported in the Appendix.
4Usually, the bayesian melding approach considers inputs and outputs of a deterministic

model. Melegaro et al. (2011) are working on the specification of deterministic models for the
spread of the close-contact infectious diseases, such as VZV and parvovirus B19. Therefore, for
the moment we do not consider the deterministic models.
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“direct” prior distributions for inputs and outputs: p(θ), p(ρ). In this paper, the
output is R0, the inputs are θ = (q) in Case A, and θ = (q1, q2) in Case B. The
model M(θ) is given by equations (2) ((6) in Case B), (3) and (4).

The prior distribution on the inputs implicitly defines a prior distribution on
the outputs. The same way, a prior distribution on the outputs implicitly defines
a prior distribution on the inputs. These implicitly defined priors are the so-called
“induced” prior distributions: p∗(θ), p∗(ρ). The literature provided more evidence
on the output we are considering, the R0, therefore we will apply the Bayesian
Melding focusing on the induced prior distributions for inputs p∗(θ). Poole and
Raftery (2000) propose a way to combine the two sets of priors, through logarithmic
pooling:

p̃(θ) ∝ p∗(θ)αp(θ)1−α

Since we are going to use uniform distribution on intervals for the direct priors,
we let α ↑ 1, and we obtain p̃(θ) ∝ p∗(θ).5

We define W as the serologic data available. From the serological data we
obtain a likelihood, p(W |M(θ)), for the input θ. We assume the prevalence to be
equal to the seroprevalence, and we obtain the log-likelihood:

log p(W |M(θ)) =
N∑
i=1

{Yi log(π(ai)) + (1− Yi) log(1− π(ai))}

where N is the size of the serological data set, Yi is a binary variable indicating if
subject i had experienced infection before age ai, and the prevalence of immune
individuals6 is π(ai) = Pr(Yi = 1|ai).

The posterior distributions for the parameters is obtained by combining priors
and likelihoods (using the Bayes theorem):

p(θ|W ) ∝ p̃(θ)p(W |M(θ))

When finding analytical solutions is not a viable option, the Sampling-Importance-
Resampling algorithm (Rubin, 1987, 1988) is used to computationally calculate the
posterior distributions. Considering the posterior distribution for the inputs, the
algorithm works in four steps:

1. Sample {ρ(1), . . . , ρ(n)} from the input prior p(ρ) on ρ.

2. For each ρ(i) determine the corresponding series of inputs, θ(i) = M−1(ρ(i)),

5The limiting pooled prior obtained by setting α = 1 will not be the same as α ↑ 1.
6The prevalence of immune individuals corresponds to the prevalence of individuals infected,

since it is a SIR model.
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by running the deterministic model.7 This produces a sample of the induced
priors on the inputs, p∗(θ).

3. Find the sampling importance weights for each θ(i) based on the likelihood
function.

4. Sample from the prior distribution {θ(1), . . . , θ(n)} with probabilities equal to
the weights to approximate the posterior distribution for the inputs.

4.1 Bayesian melding for Case A

In the benchmark case we consider only the contact data, and there is only one
parameter to estimate: q. The direct priors are: for the input q ∼ U(0, 1) and for
the output R0 ∼ U(1, 8). We sample 100 different R0’s and through our model
we find set of values for q. The induced prior becomes q ∼ U(0.006, 0.054). The
posterior median for q is equal to 0.031. I recover the posterior distribution for
R0, and its median is 4.653. AIC and BIC are respectively equal to 1242.722 and
1245.092.

4.2 Bayesian melding for Case B

In Case B we combine contact data and time use data, the input parameters to
estimate are two: θ = (q1, q2). The direct priors for the inputs are q2 ∼ U(0, 1),
and q1 ∼ U(0, 10), and for the output R0 ∼ U(1, 8). We know that the fraction
q2 is between 0 and 1, we want R0 to be between 1 and 8. Hence we sample from
10000 possible combinations of q2 and R0 to obtain set of values for q2. We find
induced priors for the inputs equal to q1 ∼ U(0.7, 5.89), and q2 ∼ U(0.017, 0.3).
The posterior median for q1 is equal to 4.735, while for q2 is 0.216. The posterior
median for R0 is 6.265. AIC and BIC for the posterior median are respectively
equal to 1261.968 and 1266.707.

7The model M(θ) is invertible. We can prove for Case A that:

R0 = eigenvalue(N)
= eigenvalue(q × cij × wj × d)
= q × d× eigenvalue(cij × wj)

Thus:

q =
R0
d
× 1

eigenvalue(cij × wj)
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5 Preliminary Results and Discussion

Figure 1 shows a contour plot of the estimated average daily time that people
in the age group i spend with people in the age group j in Italy. The estimates
are obtained, respectively, by using the approach developed in (Zagheni et al.,
2008) on Italian time use data and from the contact survey for Italy (Mossong
et al., 2008). In both cases, the highest values are on the main diagonal, implying
assortativeness. In the case of the contact matrix, the highest values are more
concentrated along the main diagonal, compared to the estimated time of exposure.

Figures 2 and 3 show the fit of the model to serologic data, based on posterior
medians for the parameters q in the Case 1 where only contact data are used, and
for q1 and q2 in the Case 2 where also time use data are used: we observe a good
fit to the seroprevalence data.

Both data on time use and number of contacts are available for single locations
(e.g., school, home, workplace): we can thus use this information to obtain a more
detailed representation of contact patterns and we can write the elements of the β
matrix as a combination of suitable contacts in the n different settings considered:

βij = q1 × [cij,1(1− e−q2,1eij,1/cij,1) + · · ·+ cij,n(1− e−q2,neij,n/cij,n)] (7)

The representation in equation 7 allows us to evaluate the impact of specific in-
terventions such as school closure (e.g., elimination of the setting ‘school’ and
adjustment of the other settings to levels observed during vacation time) or be-
havioral changes (e.g., modification of the q2 parameter for a specific setting). The
effect of these interventions will be discussed in the paper.
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6 Figures

Figure 1: Mixing patterns for Italy estimated from time use and contact surveys.
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Figure 2: Case 1: contact data. Fit of the model to serologic data for Italy. Points
are serologic data with size proportional to the corresponding sample size; solid
line is the median of the posterior distribution; dashed lines are the 2.5% and
97.5% quantiles of the posterior distribution. The solid line at the bottom of the
graph is the force of infection with its minimum and maximum values reported.
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Figure 3: Case 2: combination of contact data and time use data. Fit of the model
to serologic data for Italy. Points are serologic data with size proportional to the
corresponding sample size; solid line is the median of the posterior distribution;
dashed lines are the 2.5% and 97.5% quantiles of the posterior distribution. The
solid line at the bottom of the graph is the force of infection with its minimum
and maximum values reported.
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A Occupancy problem

The result can be derived as follows. If we think of the number of suitable minutes
of contact between groups i and j, (q2eij), as ‘balls’, and the number of contacts
between groups i and j, (cij), as ‘boxes’, then the expected number of suitable
contacts between the two age groups can be thought of as the expected value of
occupied boxes from randomly assigned balls.

To compute this expected value, define the indicator function

Zi =

{
1 if the contacted person i receives zero suitable minutes
0 otherwise

We have

E[Zi] = Pr[Zi = 1] = (1− 1

cij
)
q2eij

≈ e−q2eij/cij

Consider now Z =
∑cij

i=1 Zi. The variable Z is the total number of contacted
people who do not receive any suitable minute of transmission. Its expected value
is:

E[Z] =

cij∑
i=1

E[Zi] ≈
cij∑
i=1

e−q2eij/cij = cije
−q2eij/cij .
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