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1 Introduction

In this paper we present and discuss first demographic results using the techniques developed in [1, 2]
for analysis of longitudinal data of a population of social units. From the longitudinal data of each social
unit, using a mathematical strategy, we construct a geometric orbit in a fitness space that uniquely visualizes
the welfare of the social unit. Mathematical modelling of time-dependent phenomena [3–6] conventionally
proposes difference or differential equations and by choice of coefficients in these equations seeks to reproduce
observed population behaviour. In this paper, we will begin with the observed data and induce the dynamical
system. This is done in such a way that every observed orbit is a property of the dynamical system. We
know of no similar study.

Mathematical models in demography usually seek population counts as a function of time [7–9]. Perhaps
the most sophisticated models are those considered in [6]. There, the equations of statistical physics such as
the Fokker-Plank partial differential equations are invoked that determine the probability for a social unit to
be in some state of interest. The basic assumption in physics is that for large number of atoms (say ∼ 1023),
the orbits of those particles can never be known and that statistical methods are then justified. However, it
is precisely the importance of longitudinal surveys that they are the data of many social units that undergo
change. It is a direct challenge to find a concise set of equations that describe change for any social unit
that is surveyed.

The difficulty in designing longitudinal surveys of choosing the order in which questions are asked is well
known. Following the ideas of [1, 2] we will use question order as a mathematical variable. We know of no
similar usage. We will assume that questionnaires have been carefully designed, that responses have been
honestly given and that data is clean.

2 Agincourt Hypothesized Data coding

We visualize orbits using longitudinal data from the Agincourt Health and Demographic Surveillance
Site (HDSS). Here the social unit of interest is a household. We start by defining our purpose.

Purpose: To investigate the effect of change in three household characteristics on child educational progress.
(1)

We define educational progress below. The data is intermittent. Under the purpose (1), we consider a
questionnaire Q consisting of n = 3 questions with data for each household observation period, defined as
follows.

q0 : Was there a child without a biological mother in the household?
q1 : Was the head of the household a minor?
q2 : Was there an adult death in the household?

(2)

We cannot include educational default in the question set (2) because it is observed approximatively every
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5 years. We code each question answer ai and determine its associated fitness value xi as follows.

a0 : Yes = Unfavourable =⇒ x0 = 0
a1 : No = Favourable =⇒ x1 = 1
a2 : Yes = Unfavourable =⇒ x2 = 0

(3)

We have a sample of K = 2669 households with children of school-going age, observed over the period 1998 to
2007. We determine the population frequencies at Agincourt of changing answer values and find f1 < f2 < f0

where fi denotes the frequency of change of answer value ai.

3 Agincourt Population orbits

Demography is concerned with typical properties of populations or sub-populations. In Figure 1, we
show in S3 state orbits for sample population of K = 2669 households with children of school-going age.
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Figure 1: orbits in S3 for the sample Agincourt
population of K = 2669 households.
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Figure 2: orbits of K = 2669 Agincourt house-
holds with time dependent in the vertical axis.

In Figure 2, we give all time series for the sample population. Clustering is clearest in Figure 2 and the
most populous sub-space is identified by households where there is an adult head (x1 = 1). Of particular
importance is the time dependence of clustering. In Figure 2, it appears that the orbit of the cluster is a
vertical straight column in this sub-space. We may refer to any orbit that stays within a cluster as a typical
orbit of that cluster. Since there is only one cluster in the Agincourt data under our purpose, a typical orbit
of Agincourt is any one in the dense column of Figure 2. The cluster does not change in time and for this
questionnaire, we could sample less frequently, perhas every 5 years. Rigorous mathematical techniques of
image processing may be used to identify typical orbits.

According to purpose (1), we now define educational default by those scholars who have failed more
than three years in their school life. The sample population then splits into favourable and unfavourable
sub-populations. We find that 54.17% of households in the sampled population are defaulting so that the two
populations are roughly balanced in number (this proportion is a severe criticism of the quality of education
offered in the Agincourt district).

In Figure 3 and Figure 4 we give collective phase space visualization for the two sub-populations. We
note immediately that they are similarly clustered, show many similar transitions, and claims of cause of
default must be carefully judged. In Figure 3, we note some severe jumps to unfit states, however the number
of these transitions is insignificant.

Figure 5 and Figure 6 show the number of each transition in the most populous cases for the defaulting
and non-defaulting sub-populations respectively. Here we consider the most active transitions on a sub-space
of S3. By doing this we ignore only 2.33% of transitions. The dominant transitions are clearly 23 ↔ 24, in
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Figure 3: orbits in S3 for defaulting Agincourt
households.
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Figure 4: orbits in S3 for non-defaulting Agin-
court households.

both sub-populations. There are many idling states as indicated by the circles. In Table 1 we summarise
these dominant effects, which finally comprise about 88% of all transitions.
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Figure 5: State space S2 for defaulting Agin-
court households. In this space, every household
is headed by an adult.
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Figure 6: State space S2 for non-defaulting Agin-
court households. In this space, every household
is headed by an adult.

Table 1: Typical sub-space transition counts.

Education measure Dominant transitions dAg
ij dEd

ij dEd
ij

i → j # % # % # %
24 → 24 4336 26.56 2256 52.03 2080 47.97

∗

Number of failure years = 4 24 → 23 3650 22.36 2082 57.04 1568 42.96
23 → 23 3164 19.38 1904 60.17

∗ 1260 39.83
23 → 24 3163 19.37 1796 56.78 1367 43.22

Table 1 is used to make demographically useful conclusions. In Table 1, note that dAg
ij denotes the overall

number of transitions i → j for the whole Agincourt population, for the whole period 1998 to 2007, dEd
ij

(dEd
ij ) for the educationally defaulting (non-defaulting) populations. In the defaulting population, note the

two dominant transitions are into or at state 23, mother out-migration. In the non-defaulting population,
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the dominant transitions are into or at state 24, mother at home. These results suggest that Agincourt
educational default is related to out-migration of biological mothers.

Concerning cause and effect, it is tempting to suppose (as in physics) that a change to a state has
a unique origin. In human affairs we cannot claim this. In the present case we cannot say that out-
migration of mother causally precedes educational default, only that they tend to happen together. Given
that educational default is observed roughly every 5 years, and the average observation time is 7 years,
educational default is a property of the household and of the 10 years period of observation, not of household
moments of observation, and we cannot expect to do better than this. It is clear that if we had the scenario
annual education data, and, if there was a clear transition for households with mothers at home and non-
defaulting children to mother out-migration and defaulting children, for a significant number of households,
that we might reasonably claim a causal chain.

We come to these conclusions without statistical inference (but under the hypothesis that the questions
(2) are appropriate and are sufficient for Purpose (1)). Our conclusions are for households with adult
household head (because there are few contrary cases). Clearly out-migration of mothers puts children at
risk of defaulting and has been coded correctly as unfavourable. We can make no clear conclusion about
the effect of adult death and so the outcome is neutral to the coding (3). We speculate that independent
sociologists would eventually agree and code and visualize the same orbits under Purpose (1) and questions
(2). The strategy could now be extended by deleting q1 and including different questions.
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