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Abstract

In this paper we put forward a Bayesian Model Averaging method dealing with

model uncertainty in the presence of potential spatial autocorrelation. The method uses

spatial �ltering in order to account for di�erent types of spatial links. We contribute

to existing methods that handle spatial dependence among observations by explicitly

taking care of uncertainty stemming from the choice of a particular spatial structure.

Our method is applied to estimate the conditional speed of income convergence across

255 NUTS-2 European regions for the period from 1995 to 2005. We show that the

choice of a spatial weight matrix - and in particular the choice of a class thereof - can

have an important e�ect on the estimates of the parameters attached to the model

covariates. We also show that estimates of the speed of income convergence across

European regions depend strongly on the form of the spatial patterns which are assumed

to underlie the dataset. When we take into account this dimension of model uncertainty,

the posterior distribution of the speed of convergence parameter has a large probability

mass around a rate of convergence of 1%, approximately half of the value which is

usually reported in the literature.
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1 Introduction

There is a fast-growing literature that deals with econometric models which incorporate
the spatial correlation inherent in geo-coded cross-sectional data.1 Typically, data points in
economic applications refer to locations in space whose interactions induce a certain spa-
tial dependence (and thus a correlation structure). If this is the case, standard regression
techniques lead to misleading inference and models in which these geographical links are
parametrized using spatial weight matrices have been proposed.

Most empirical studies in the spatial econometrics literature model spatial spillovers in the
framework of spatial autoregressive (SAR) speci�cations, conditional on a given spatial
weight matrix. However, not much research is existing about the e�ects of misspeci�cation
in the spatial weights matrix on the estimates of the model parameters. The vast majority
of the existing studies stick to a single spatial weights matrix and build the econometric
model conditioning on the choice of such a spatial structure. Given a spatial structure, some
empirical studies perform robustness checks where the estimation is repeated for di�erent
spatial link matrices.2 A noteworthy exception is the work by LeSage and Fischer (2008),
which considers the issue of model averaging under uncertainty in the spatial link matrix
concentrating on a single class of spatial weight matrices. The method put forward by
LeSage and Fischer (2008) allows us to deal with model uncertainty in both the dimension
of covariate choice and the parametrization of spatial links and thus generalizes the approach
of LeSage and Parent (2007). From a technical point of view, LeSage and Fischer (2008)
proposes the use of numerical integration techniques to obtain posterior model probabili-
ties for speci�cations with di�erent spatial weight matrices, which are then used to obtain
Bayesian model-averaged estimates. The computational costs of this procedure makes it an
improbable choice for large datasets such as the ones usually considered in studies on the
determinants of economic growth. In this piece of work we develop a simple Bayesian Model
Averaging (BMA) method to obtain parameter estimates after integrating out the uncer-
tainty over the matrix of spatial weights by means of spatial �ltering. Using spatial �ltering
based on the eigenvector approach (see Getis and Gri�th (2002) and Tiefelsdorf and Grif-
�th (2007)), uncertainty about the spatial link matrix can be embedded in the framework of
standard (non-spatial) BMA methods in a straightforward manner. This implies that large
sets of covariates and/or spatial weight matrices (and classes thereof) can be easily incor-
porated to the model space conidered when carrying out inference under model uncertainty
for spatially correlated data.

We also carry out an empirical application to check the robustness of economic growth deter-
minants among European regions and to obtain estimates of the speed of income convergence
in the presence of uncertainty about both the nature of the covariates entering the model and
the matrix of spatial weights. Researchers have spent a great deal of e�ort in trying to assess
and quantify the income convergence process across economic units (usually, countries, see
Barro (1991) and Barro and Sala-i-Martin (1991)). The existing empirical literature tends
to focus on estimating the income convergence speed using cross-sectional or panel data,
with a theoretical setting based on neoclassical economic growth models (see Mathunjwa

1For an excellent introduction and overview of methods see LeSage and Pace (2009).
2See Crespo Cuaresma et al. (2009) for a recent example using European regional growth data.
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and Temple (2007), for a thorough analytical account of convergence in the Solow model).
Many authors have also approached the issue of income convergence using regional datasets
(see Sala-i-Martin (1996)). The use of regional data, however, poses an extra problem to
the study of income convergence and the measurement of the speed of convergence. There
is widespread evidence (see e.g. Fischer and Stirböck (2006), Niebuhr (2001)) that spatial
spillovers have a signi�cant in�uence on economic growth and therefore observations from
regional growth datasets cannot be regarded as independently generated, even after con-
trolling for region-speci�c determinants. Spatial interactions, such as trade, technological
spillovers or factor mobility, these being important forces for the process of convergence, need
therefore to be speci�ed explicitly in order to obtain estimates of the speed of income con-
vergence within a group of regional units. In the presence of positive spatial autocorrelation
in economic growth data, estimates of the speed of income convergence across geographi-
cal units will tend to be biased upwards if the spatial structure of the data is left unmodeled.3

In our empirical application, we obtain the posterior distribution of the speed of income
convergence free of spatial spillovers across European regions in the presence of model un-
certainty concerning the choice of regressors and spatial links. In particular, we average over
models containing 16 possible spatial weight matrices corresponding to 4 di�erent classes
(Queen contiguity, nearest neighbor, exponential decay and distance band matrices). Our
results indicate that the speed of income convergence across regional units is around 1%,
approximately half of the value which tends to be obtained with models conditioning on a
single spatial weight matrix.

This paper is organized as follows. Section 2 considers the issue of uncertainty about the
spatial correlation structure and embeds the problem in a general Bayesian Model Averaging
setting where uncertainty about the variables entering the speci�cation is also assumed.
Section 3 applies the methodology to a dataset on European regions in order to obtain
estimates of the speed of income convergence in Europe. Section 4 concludes.

2 Spatial autocorrelation, spatial �ltering and model un-

certainty

2.1 The econometric setting

Consider a cross-sectional growth regression from which we aim at extracting the speed
of (conditional) income convergence across N geographical units. We explicitly model the
potential existence of spatial autocorrelation by using a model of the class of spatial regression
models (Anselin (1988)), namely a spatial autoregressive (SAR) model,

y = αιN + ρWy +Xk~χk + σε (1)

where y is an N -dimensional column vector whose elements correspond to the annualized
income growth of each geographical unit, α is the intercept term, ιN is an N -dimensional

3The patterns of regional growth and convergence in Europe have also been investigated by Boldrin and
Canova (2001).
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column vector of ones, Xk = (x1 . . .xk) is a matrix whose columns are stacked data for
k explanatory variables and ~χk = (χ1 . . . χk)

′ is the k-dimensional parameter vector corre-
sponding to the variables in Xk. We specify the spatial autocorrelation structure using the
matrix W, with its corresponding coe�cient ρ re�ecting the degree of spatial autocorrela-
tion. The SAR model nests the non-spatial speci�cation for the case ρ = 0. One of the
potential variables in Xk is the initial income level at the beginning of the period in which
the growth rate of income is calculated. Equation (1) constitutes a parametric spatial model
where the spatial parameter ρ is often interpreted as a spillover parameter, with positive
values indicating the existence of spillovers from neighboring observations. Let us denote
the parameter associated to initial income per capita by β. Evidence of conditional con-
vergence after accounting for spatial spillover e�ects is found whenever β is negative, thus
implying that, after controlling for other factors, economies with low initial income levels
grow on average faster than others having relatively higher initial income. In the non-spatial
case (ρ = 0), the speed of convergence can be computed using a log-linearization around
the steady-state of the Solow model as λ = −(1/τ)[1 − exp(−βτ)], where τ is the length
of the period considered in the growth variable (see for instance Barro and Sala-i-Martin
(2003)). In the case where spatial spillovers are present, Egger and Pfa�ermayr (2006) show
that the speed of convergence of a region depends on its location, and that the speed of
income convergence can be divided into a part that is driven by spatial spillovers and a part
which is spillover free. The latter is given by β in the speci�cation above and is what Egger
and Pfa�ermayr (2006) refer to as �speed of convergence proper", linked to the convergence
process free of spatial e�ects. This is the parameter of interest in the second part of our
empirical analysis. This speed of convergence would correspond to that implied by the the-
oretical framework of the standard closed-economy Solow model.

Since growth theory is ambiguous about the set Xk of explanatory variables to include,
we are confronted with a classical situation of model uncertainty concerning the covariates
which should enter the model. If the estimate of the coe�cient of interest (in our case β)
depends on the covariates entering the model, we will eventually overestimate the degree of
precision of our estimate if we do not account for this particular source of uncertainty.

In our setting, an extra degree of uncertainty arises if we do not know the actual nature
of the spatial interactions which we model through the spatial autoregressive term in (1),
that is, if we conduct inference conditional onW. However, besides re�ecting the degree of
spatial interaction across the data, Anselin (1988) notes that ρ might pick up a range of
misspeci�cations of the general model. Spatial autocorrelation will be observable whenever
the phenomenon under study is a spatial process or omitted variables cause spatial variation
in the residuals (Tiefelsdorf and Gri�th (2007)). Note that both arguments typically apply
to economic cross-section data, where economic units interact with each other and omitted
variables decrease the level of con�dence in econometric analysis. Since inference from the
SAR model is conditional on the weight matrix W, which has to be exogenously speci�ed,
and in most applications there is little theoretical guidance on which structure to put on
the weight matrix, explicitly accounting for this source of model uncertainty is a natural
generalization to uncertainty in the nature of Xk in the framework of BMA.
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2.2 Spatial �ltering

The spatial �ltering literature seeks to remove residual spatial autocorrelation patterns prior
to estimation and is in principle not interested in directly estimating ρ in (1). Getis and
Gri�th (2002) propose two (nonparametric) approaches of �ltering the data before applying
regression analysis. The method utilizes a local spatial statistic (the Gi statistic, see Anselin
(1988)) to decompose the data into a purely spatial and a non-spatial part. Limitations to
this approach are that (a) it is restricted to non-negative data and (b) each variable entering
the regression has to be �ltered separately. The approach put forward by Getis and Gri�th
(2002) and Tiefelsdorf and Gri�th (2007), on the other hand, is based on an eigenvector
decomposition of a transformedW matrix, where the transformation depends on the under-
lying spatial model.

Assume that the data follows a SAR model as in equation (1) and thus can be written as

y = (I − ρW)−1(αιN +Xk~χk + σε) =

= αιN +Xk~χk + σε+
∞∑
m=1

ρmWm(αιN +Xk~χk + σε). (2)

Spatial �ltering methods aim at �nding a good approximation for the last term in (2) which
allows to remove the residual spatial autocorrelation induced by either a pure spatial autore-
gressive process or omitted variables that tie the residuals spatially together. The spatial
link matrix is �rst transformed to satisfy symmetry and then multiplied by the demeaning
projectorM1 = I−ιN(ι′N ιN)−1ι′N in order to extract eigenvectors with underlying SAR struc-
ture. Each extracted eigenvector ~ei of [M1

1
2
(W+W′)M1] re�ects a distinctive spatial pattern

and is associated with a speci�c spatial autocorrelation level. Thus instead of equation (1)
we may estimate

y = αιN +
E∑
i=1

γi~ei +Xk~χk + σε, (3)

where each eigenvector ~ei spans one of the spatial dimensions. By introducing the eigen-
vectors into the regression, we explicitly take care of (remaining) spatial patterns in the
residuals. Furthermore spatial commonalities among the covariates in Xk are conditioned
out. This reduces the degree of multicollinearity and further separates spatial e�ects from
the �intrinsic" impact the employed regressors exert on the dependent variable.

The fact that the transformation of the spatial weight matrix does not involve the design
matrix Xk is an important advantage in the framework of model uncertainty, since the cal-
culation of the eigenvectors has to be carried out only once.4 In our application, we identify
the set of eigenvectors needed (E) with the algorithm proposed by Tiefelsdorf and Gri�th
(2007). This algorithm identi�es the minimal subset of eigenvectors until the residual spatial

4Notice that this would not be the case for models involving spatially lagged errors (see Tiefelsdorf and
Gri�th (2007)). In this case, the projection matrix used is a function of Xk. Although our method is not
a�ected by the use of this projector, the implementation for large datasets can be computationally very
costly.
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correlation as measured by Moran's I statistic (see Anselin (1988)) drops below a certain
threshold value. It should be noticed that, within the BMA setting put forward below, the
speci�cation chosen in terms of variables in Xk and estimation method (which is OLS after
including the eigenvectors) do not depend on the number of eigenvalues included and thus
our setting should not be a�ected by pretesting problems related to the results of Moran's I
test.

2.3 Bayesian Model Averaging with uncertain spatial e�ects

From a Bayesian perspective, the problem of obtaining estimates of the parameter asso-
ciated to a covariate under uncertainty in both the nature of W and Xk can be handled
in a straightforward manner using spatial �ltering techniques. Let us assume that we are
interested in the parameter corresponding to the initial income level, β. Denote the set of
potential models by M = {M1

1 ,M
1
2 , . . . ,M

1
2K , . . .M

2
1 , . . . ,M

2
2K , . . . ,M

Z
1 , . . . ,M

Z
2K}, where

K stands for the number of potential explanatory variables and Z the number of potential
spatial weighting matrices Wz, z = 1, . . . , Z each with associated set of eigenvectors Ez.
The cardinality of M is therefore 2K × Z. A particular model, say M z

k , is characterized
by its parameter vector θzk = (α, χk, γz) corresponding to the intercept term included in all
models, the coe�cients on the regressors entering the model and the coe�cients on the set
of eigenvectors Ez related to Wz. In the BMA framework5, the posterior distribution of β
takes now the form of

p(β|y) =
2K∑
j=1

Z∑
z=1

p(β|M z
j , y)p(M z

j |y) (4)

with y denoting the data and β the coe�cient of interest. Inference on β is based on single
inferences under models j = 1, . . . , 2K × Z weighted by their respective posterior model
probabilities, p(M z

j |y), which in turn depend on the corresponding matrix of spatial weights.
We can construct (4) making use of the fact that

p(M z
j |y) =

p(y|M z
j )p(M z

j )∑2K

j=1

∑Z
z=1 p(y|M z

j )p(M z
j )
. (5)

where p(M z
j ) denotes the prior distribution assigned to model M z

j and p(y|M z
j ) is the inte-

grated likelihood. For the sake of illustration, consider the particular case of two competing
models. In this case, the posterior odds are simply given by the product of the Bayes
Factor with the prior odds. In order to obtain (5) and thus (4), we need to specify pri-
ors for the regression coe�cients, for the variance σ and over the model space M. As is
common practice in the applied literature, we use Zellner's g-prior structure on the regres-
sion slopes, which merely requires the choice of one hyper parameter g, thus specifying
(~χ, α)|σ2 ∼ N (0, σ2g[X ′X]−1). Following Ley and Steel (2009), we move away from assum-
ing an uninformative prior over the model space, as many other BMA studies tend to do.
Instead, we assume that the prior on the model space (p(M)) is a binomial-beta prior, which
we elicit by anchoring the prior on an expected model size. The technical appendix presents

5For an introduction to BMA see for instance Koop (2003) or Raftery (1995).
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a discussion on the speci�c prior choices for g and on the model space.

In many applications, such as the one we present here, the cardinality of the model space
renders the evaluation of (4) intractable. Several methods have been proposed to overcome
this problem and Markov Chain Monte Carlo Model Composition (MC3) algorithms have
become a useful tool to evaluate subsets of the model space which account for a large posterior
model probability mass (see Fernández et al. (2001b) for an application to economic growth
determinants). Throughout the paper we rely on a random walk MC3 search algorithm to
evaluate the model space. We slightly modify the usual MC3 method in order to account for
uncertainty over a set of spatial weight matrices. Our algorithm proceeds in the following
modi�ed way:

1. Starting with a model as de�ned by a group of regressors and the set of eigenvectors Ez
associated to a spatial weight matrixWz, in each iteration step a candidate regressor
is drawn from the set of potential covariates. We add the candidate regressor to the
current model M z

j if that model did not already include it. On the other hand, the
candidate regressor is dropped from the model if it is already contained in M z

j . Note
that both models are conditional on the same set of eigenvectors Ez. The candidate
model is thus always drawn from a neighborhood of the current one, de�ned as the
subset of the model space formed by models which di�er only by a single regressor.
The candidate model M z

c is then subject to the following acceptance probability:

p̃cj = min

[
1,
p(M z

c )p(y|M z
c )

p(M z
j )p(y|M z

j )

]
. (6)

Notice that the potential punishment for model size is embedded in both the model
prior and the Bayes Factor.

2. In the second step a candidate weighting matrix Wc (and hence its associated set
of eigenvectors Ec) is drawn uniformly from the set of remaining matrices W(−z) :=
{Wi}Zi=1, i 6= z. Since we are interested in handling uncertainty across di�erent speci�-
cations ofW the eigenvectors belonging to Ec are always forced to enter the regression
jointly. The accepted model from step 1), denote it by M z

j , is then compared with
the model containing the same regressors but a di�erent set of eigenvectors Ec. The
acceptance probability is given by:

p̂cz = min

[
1,
p(y|M c

j )

p(y|M z
j )

]
. (7)

Since both models consist of the same number of regressors subject to sampling the
prior odds on model size cancel. The reward for parsimony with respect to the spatial
weight matrix is solely governed by the Bayes Factor. It is straightforward to introduce
a further - informative - prior on the space of weight matrices instead of the uniform
prior employed in our analysis.

One draw from the Markov chain corresponds to consecutively carrying out steps 1) and 2).
We repeat them a large number of times and compute the corresponding BMA statistics
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based on the set of models visited, instead of the full model space. We are especially
interested in the posterior distribution of the parameters of the covariates in (1), their
posterior variance and the posterior inclusion probability (PIP) of the covariates. The latter
one is de�ned as the sum of posterior model probabilities of the speci�cations including a

particular covariate, PIPl =
∑2K

j=1

∑Z
z=1 p(M

z
j such that χl 6= 0|y). The performance of this

method is assessed in the following subsection by means of a simulation study.

2.4 A simulation study

In order to test the ability of our sampler to both identify model covariates and unveil spatial
structures present in the data we conduct a small simulation study. Our focus is the posterior
distribution over the spatial link matrices and we choose a rather simple setting for the data
generating process. We draw 10 potential explanatory variables (x1, . . . ,x10) using N =255
draws from a standard normal distribution for each covariate, so as to match the sample size
of our empirical application. The spatial autocorrelation level is �xed at ρ = 0.6, a typical
level of spatial dependence present in economic data sets. Data on the dependent variable
are generated according to

y = ρWzy + 1.5x1 + 2x4 − 0.5x10 + 0.5ε, (8)

where ε is a standard normal variable. We restrict our space of potential weighting matrices
to three di�erent classes (for a textbook discussion on weighting schemes see Anselin (1988)):
Queen contiguity matrices, K-nearest neighbor matrices and distance band matrices.

Queen contiguity matrices assign equal positive weights to observations sharing a common
border (including cases where the common border is just a vertex). We will consider a
�rst-order contiguity de�nition for neighbors in this class, and denote the spatial weighting
matrix as WQ

1 .
6 K-nearest neighbor matrices evaluate great circle distances between all

observations and assign a positive weight to the K nearest neighbors. From this class of
weighting matrices, we consider the one based on four neighbors (WK−NN

4 ) for the simula-
tion. Finally, distance band matrices regard geographical units that lie within a distance
band of d kilometers as neighbors. Our space of spatial weight matrices in the simulation
includes a distance band matrix based on a band of 400 kilometers (Wb

400). All these al-
ternative space weighting matrices belong to the class of binary weight matrices and solely
di�er with respect to the de�nition of the set of neighbors.7

We impose the spatial weights corresponding to each matrix computed on the dataset of 255
NUTS-2 regions, and thus replicate spatial patterns in our simulated data which reproduce
the geographical structure of the European regional dataset analyzed in section 3. For the
simulation we consider �ve cases, each corresponding to aWz matrix in (8):

• case z = 1: Wz is a �rst order Queen contiguity matrix (WQ
1 ),

• case z = 2: Wz is a four nearest neighbor weight matrix (WK−NN
4 ),

6Note that this weighting scheme might create "spatial islands" (i.e. observations without any neighbors).
7All matrices used in the analysis are row-standardized, which is the prevalent coding scheme in the

applied income convergence literature (section 3). See Tiefelsdorf et al. (1999) for di�erent coding approaches.
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• case z = 3: Wz is a 400 km distance band weight matrix (Wb
400),

• case z = 4: Wz is given by 0.3WQ
1 + 0.6WK−NN

4 + 0.1Wb
400,

• case z = 5: Wz is given by 0.5WQ
1 + 0WK−NN

4 + 0.5Wb
400.

The set of potential covariates in the simulation has cardinality 10, and the set of potential
spatial weighting schemes has a cardinality of 3 (WQ

1 ,W
K−NN
4 andWb

400), thus leading to
a model space composed by 3072 models. We repeat the exercise for 500 simulated datasets
for each setting z, using an MC3 search method over the model space with 5000 replications
each time. The averaged results by case are presented in Table 1. Since the inclusion prob-
abilities of the variables included in the model were all very close to one, and the estimated
parameters also very close to the true values, we do not report them and concentrate exclu-
sively on the inclusion probabilities (percentage of models visited by the MC3 algorithm by
W matrix) for each one of the spatial weighting matrices.8

The results indicate that the method can identify the underlying spatial structures with
extremely high precision for the cases where the true spatial weighting matrix is a member
of a single class. Not surprisingly, the results for cases 4 and 5, where the spatial weighting
matrix is a weighted average of matrices from di�erent classes, are less spectacular, but still
very satisfactory.

3 Income convergence and spatial interactions across Eu-

ropean regions

In this section we assess the robustness of growth determinants and estimate the speed of
income convergence of European regions in presence of both model uncertainty in terms of
model covariates and the form of spatial interactions. Our dataset contains information on
50 potential covariates for 255 NUTS-2 European regions. The dependent variable refers
to the average annual growth rate of real income per capita over the period from 1995 to
2005, de�ated using national price data. Information about coverage and de�nitions of the
variables and abbreviations is presented in the Data Appendix. We consider linear models
such as (1) in the spatial �ltering representation given by (3).

We allow for four types of spatial weighting matrices for each one of the following classes:
Queen matrices,K-nearest neighborhood, distance band and exponential decay. For the class
of Queen matrices we consider WQ

z , z = 1, 2, 3, 4, ranging from a �rst order neighborhood
matrix up to a fourth order neighborhood. The class of K-nearest neighborhood matrices is
represented by four variants, WK−NN

z , z = 4, 5, 6, 12, each one based on z neighbors. The
space of spatial weight matrices in our empirical study includes further four distance band
matricesWb

z, z = 400, 600, 800, 1000, where each one of them identi�es neighbors based on

8We use the BRIC prior (Fernández et al. (2001a)) for g (g = K2) and the beta-binomial prior over the
model space with prior expected model sizeK/2. The results on the inclusion probabilities of the explanatory
variables and the corresponding posterior distributions over parameters are available from the authors upon
request.
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W
Q
1 W

K−NN
4 W

b
400

Case j =1
Percentage visited 0.993 0.005 0.003
Adj. R2 0.523 0.400 0.208
# eigenvectors 33.952 22.968 9.366
Case j =2
Percentage visited 0.004 0.996 0.000
Adj. R2 0.408 0.503 0.222
# eigenvectors 23.470 29.806 9.606
Case j =3
Percentage visited 0.005 0.014 0.981
Adj. R2 0.153 0.164 0.207
# eigenvectors 7.074 7.792 10.942
Case j =4
Percentage visited 0.115 0.883 0.001
Adj. R2 0.417 0.439 0.215
# eigenvectors 24.646 25.442 9.664
Case j =5
Percentage visited 0.691 0.066 0.243
Adj. R2 0.334 0.275 0.207
# eigenvectors 19.966 15.420 10.430

The results in each case refer to averages over 500 simulated datasets. "Percentage visited" is the percent-
age of times a model with a given spatial weight matrix was visited in the MC3 algorithm, and is thus
interpreted as the corresponding posterior inclusion probability. "Adj. R2" is the average adjusted R2 of
regressions based exclusively on the eigenvectors corresponding to a particular spatial weighting matrix,
and "# eigenvectors" is the average number of eigenvectors extracted using the method by Tiefelsdorf and
Gri�th (2007).

Table 1: Simulation Results

bands of z kilometers. Finally, the set of exponential decay matrices has a representative el-
ement given by [We

φ]ij = [dij]
−φ, where dij is the (great circle) distance between observations

i and j and the parameter φ governs the decay of the weighting scheme. We consider four
possible exponential decay matrices, given by φ = 1, 2, 3, 4. A unit φ parameter implies that
observations are weighted according to inverse distances, while higher values of φ lead to a
sharper decay of weights as distance increases. Figure 1 summarizes the number of links and
the percentage of strictly positive links for each one of the matrices in the set of potential
spatial weight matrices. As Figure 1 exempli�es, there are strong di�erences in the spatial
structure underlying each one of the matrices in the sense of the amount of neighboring
units assumed to a�ect economic performance in a given region. The correlation of spatially
lagged income (Wzy) for the 16 matrices ranges from 0.50 to 0.96.

We apply the spatial �lter proposed by Tiefelsdorf and Gri�th (2007) to each of our W
matrices and extract the relevant subsets of eigenvectors based on a cut-o� of 0.1 in Moran's
I statistic. Table 2 shows the number of selected eigenvectors for each spatial link matrix
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Figure 1: Summary statistics for di�erent weight matrices: total links and non-zero links
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and the adjusted R2 resulting from the regression of the dependent variable solely on a con-
stant and the full set of eigenvectors. The results reveal that a large part of variation in the
data can be explained exclusively by spatial patterns as proxied by the eigenvectors. This
complicates the estimation of the �pure" speed of income convergence, free from the spatial
e�ects created by economic growth poles.

WQ
1 WQ

2 WQ
3 WQ

4 WK−NN
4 WK−NN

5 WK−NN
6 WK−NN

12

Number of eigenvectors 15 15 10 8 18 14 18 19
Adj. R2 0.5888 0.5342 0.5250 0.5126 0.5515 0.5398 0.5248 0.5131

We
1 We

2 We
3 We

4 Wb
400 Wb

600 Wb
800 Wb

1000

Number of eigenvectors 19 17 13 17 13 12 12 13
Adj. R2 0.5630 0.5663 0.5887 0.5778 0.5211 0.4877 0.4759 0.4017

Table 2: Number of eigenvectors and adjusted R2: Spatially �ltered income per capita growth

In a �rst stage, we obtain BMA estimates for the e�ect of the covariates on economic growth
conditioning individually on each one of the di�erent classes of spatial weighting matrices9.
Since sensitivity analyses reported in the spatial econometric literature are often restricted
to one particular class of spatial weight matrices, the di�erence in inference resulting across
classes of weighting matrices is of particular interest. We therefore assess the dependence of
the relative importance of di�erent covariates with respect to spatial weighting matrices. For
that purpose, we obtained posterior inclusion probabilities for each variable in our dataset in
six di�erent BMA settings. We �rst obtain BMA statistics based on a linear model without
spatial interactions (equation (1) with the constraint ρ = 0 imposed or, alternatively, equa-
tion (3) with γi = 0 for i = 1, . . . , E). Secondly we obtain BMA statistics based on spatial
weight uncertainty but constraining the spatial links to belong to each one of the individual
classes of spatial weight matrices (Queen, exponential decay, K-neighborhood and distance
band). Finally we calculate BMA statistics where the space of spatial weight matrices is
composed by all 4 classes and hence 16 W matrices. Table 3 presents the results in terms
of posterior inclusion probability (PIP), mean (PM) and standard deviation (PSD) of the
posterior distribution of the parameters. Figure 2 plots the posterior inclusion probability
of the variables which achieve the highest values in this statistic for the BMA exercises
conditioning on di�erent classes of spatial weight matrices. Table 4 presents the posterior
inclusion probabilities for each one of the spatial weight matrices in the analysis.

The results in Figure 2 and Table 3 present interesting di�erences across estimates depending
on the class of spatial weight matrices which is conditioned upon. The choice of a particular
class of spatial weight matrices as a parametrization of the links across regions may have an
important e�ect on the resulting posterior inclusion probabilities, as can be seen in Figure
2 for the case of the human capital variable ShSH (share of working age population with
high education). The results of BMA using the class of K-nearest neighbor matrices and
BMA using distance band spatial weight matrices imply that the importance of ShSH as an
explanatory factor of di�erences in income growth is small to negligible. On the other hand,

9The benchmark BRIC prior implies setting g = K2. We anchor the beta-binomial prior on a prior
expected model size of K/2.
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Figure 2: Posterior inclusion probabilities of covariates based on di�erent classes of spatial
weight matrices: all classes ({WQ,We,WK−NN ,Wb}), Queen spatial matrices ({WQ}),
K-nearest neighbors spatial matrices ({WK−NN}), exponential decay distance matrices
({We}), distance band matrices ({Wb}) and no spatial structure ({∅}).

the results based on BMA using one of the remaining spatial weight matrices (Queen and
exponential decay), as well as the results based on models without spatial auto-regression,
depict ShSH as one of the most important variables for explaining income growth in Euro-
pean regions. The results of our preferred speci�cation, where uncertainty is generalized to
take place both within and across classes of spatial weight matrices imply that the human
capital variable is indeed a robust determinant of economic growth in European regions.
Similarly, the results for AccessAir (potential air accessibility) di�er extremely if the spatial
link is parametrized using a spatial weight matrix with exponential decay as compared to
any of the other classes.

The posterior probabilities of models averaged across spatial weighting matrices are presented
in Table 4. There are three individual weighting matrices which receive practically all of the
evidence in terms of posterior probability: We

3,W
Q
4 and, to a minor extent, WQ

3 . These
matrices present a relatively di�erent number of links (see Figure 1). The e�ects of spa-
tial weight uncertainty on the relative importance of explanatory variables as determinants
of regional growth can be grasped by examining the joint posterior inclusion distribution

13
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Figure 3: Joint distribution of regressors and weighting matrices based on the model involving
all 16 matrices. The distribution is shown for the 20 most important variables according to
the associated posterior inclusion probabilities (PIP).

of covariates and spatial weight matrices, which is depicted in Figure 3.10 Figure 3 shows
that the importance of regressors in terms of posterior inclusion probability tends to remain
similar across spatial structures. An interesting exception is the physical capital investment
variable (shGFCF), whose relevance as a robust determinant of growth is almost exclusively
concentrated in models including the exponential decay weighting matrix with φ = 3, We

3.
The result sheds a particularly interesting light on the modeling choice of spatial links for
cross-sectional regional growth regressions, since most empirical applications blindly condi-
tion on one of the elements of theW space, and the choice in the case of economic growth
applications tends to be a spatial weighting matrix with exponentially decaying weights with
distance.

Table 5 shows results on the Moran's I test for the residuals of the best models to examine
whether the speci�cations with highest posterior model probabilities present any remaining
residual spatial correlation. The average test statistic is given for the 25, 50, 100 and 500
models that achieved highest posterior support. The distribution of posterior mass is quite

10Figure 3 is constructed with estimates based on the 5,000 models with highest inclusion probability, while
the results reported in Table 4 are based on MC3 frequencies. This implies that some small quantitative
di�erences exist between the two.
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tight, with the �rst 25 models accounting already for 80% to 89% of total posterior mass.11

The table reveals that spatial �ltering does account e�ciently for spatial autocorrelation in
the data. For illustrative purpose we have also computed the full SAR estimates for the
highest posterior models identi�ed by our BMA procedure. The estimates of ρ show that
spatial correlation is positive and high, a stylized fact in regional growth regressions which
stresses the importance of dealing in a systematic way with the spatial dimension of the
data. Note also that the residuals of the non spatial model are highly autocorrelated in
space according to Moran's I test, thus potentially leading to biased estimates.

The choice of a spatial weight matrix (or a group of them) is particularly important when
it comes to obtaining an estimate for the speed of income convergence free of e�ects caused
by the growth process in neighboring regions. This e�ect is embodied in the estimate of the
parameter attached to the initial level of income per capita in the regional growth regres-
sions including a spatial autoregressive term. In Figure 4 we present the smoothed histogram
corresponding to the estimates of β sampled in the MC3 procedure. We present both the
estimates corresponding to all models sampled (unconditional density) and over the set of
models which include initial income as a regressor (conditional density), for exercises that
use di�erent conditioning sets of spatial weighting matrices. In particular, in order to ex-
emplify the di�erences depending on the conditioning set in terms of W matrices, Figure 4
shows the results for the BMA exercise in three di�erent settings for the spatial links: (a)
models without spatial weighting matrix, (b) models with spatial weighting matrices of the
class of distance bands matrices and (c) models with spatial weighting based on all classes
put forward above.

11The fact that a large proportion of posterior support tends to be concentrated in relatively few models is
a characteristic related to the elicited prior for g (see Feldkircher and Zeugner (2009) for a recent contribution
which studies this issue in detail).
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Figure 4: Unconditional and conditional posterior distribution of the speed of income con-
vergence parameter based on 5,000 models with highest inclusion probabilities a) without
spatial e�ects ({∅}), b) with distance band matrices ({Wb}) and c) with the full set of spatial
weighting matrices ({WQ,We,WK−NN ,Wb})
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Figure 5: Posterior distribution of the speed of income convergence parameter based on
5,000 models with highest inclusion probabilities a) without spatial e�ects ({∅}), b) with
distance band matrices ({Wb}) and c) with the full set of spatial weighting matrices
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WQ
1 WQ

2 WQ
3 WQ

4 WK−NN
4 WK−NN

5 WK−NN
6 WK−NN

12

PIP 0.0199 0.0001 1.8384 37.5718 0.0000 0.0006 0.0000 0.0000
We

1 We
2 We

3 We
4 Wb

400 Wb
600 Wb

800 Wb
1000

PIP 0.0000 0.0000 60.5474 0.0000 0.0000 0.0217 0.0000 0.0000

Table 4: Posterior inclusion probability over space of weighting matrices (in %)

The convergence speed estimates for the model space which does not include spatial e�ects
appear systematically higher than in the cases where spatial spillovers are explicitly mod-
eled, as is expected if unmodeled positive spatial autocorrelation is present in the data. As
we allow for more �exibility when modeling spatial autocorrelation patterns, the estimate of
the "pure" speed of convergence (free of the e�ect of spatial autocorrelation) decreases. The
di�erences are quantitatively very large. If we concentrate on the median of the conditional
point estimate distributions in Figure 4, estimates of the speed of convergence fall from
levels above 2% (a value which has become something of a stylized fact when it comes to
cross-sectional growth regressions), based on models without spatial e�ects, to 1% when the
full set of 16 spatial weight matrices is conditioned upon. If a smaller set of spatial weighting
matrices is conditioned upon, the resulting distribution over single-model speed of conver-
gence parameter estimates lies somewhat between the two extremes, with a modal value of
2%. Concerning unconditional estimates, as we allow for more �exibility when modeling
spatial links a bimodal unconditional distribution with a zero mode emerges. This is the
case since some of the spatial structures allow us to model the growth di�erences between
rich and poor regions based on purely geographical patterns, without the need of including
conditional convergence. This results in a group of models which do not include the initial
level of income per capita as a regressor but are able to explain growth di�erentials rela-
tively well. Table 3 and Table 4 show that such an e�ect is related to the inclusion of Queen
contiguity matrices in the conditioning set.

While Figure 4 is based exclusively on the distribution of single point estimates from the
models visited by the Markov chain, Figure 5 presents the full posterior distribution of the
speed of convergence in the settings described above. As more classes of spatial linkages
are allowed in the model set, the posterior probability mass tends to move from values cen-
tered around 2.25% and covering mostly the interval (2%, 2.5%) to values between 1% and
1.5%, with a very prominent mode at around 1.1%. This shape of the posterior probabil-
ity distribution of β is caused by single speci�cations obtaining very large posterior model
probabilities, a feature which is related to the use of �xed g-priors and has been recently
dubbed the supermodel e�ect by Feldkircher and Zeugner (2009).

Our results imply that the estimates obtained in previous research concerning the regional
speed of income convergence using models which condition on a single spatial link matrix
tended to overestimate the extent of the income convergence process. This result is par-
ticularly important for economic policy exercises implying the ceteris paribus condition in
models with spatial autocorrelation. The interpretation of the income convergence speed in
neoclassical economic growth models is based on the assumption that all factors a�ecting
economic growth remain constant with the exception of income itself. In the framework of
models with spatial spillovers in the form of spatial autoregressive speci�cations, an extra as-
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sumption for the interpretation of the speed of convergence is that the income levels of other
regions also remain constant (and una�ected by the growth process in neighboring regions),
so that ensuring the lack of spatial correlation in the residuals of the growth regression is
an important prerequisite for the analysis. Our results give strong evidence that the quan-
titative assessment of income convergence across regions requires a systematic treatment of
uncertainty in the nature of spatial growth spillovers.

4 Conclusions

We put forward a Bayesian Model Averaging method for dealing with model uncertainty in
the presence of potential spatial autocorrelation of unknown form. We propose using spatial
�ltering methods to, on the one hand, exploit large sets of possible classes of spatial weight-
ing matrices and, on the other hand, achieve computational gains as compared to the direct
estimation of spatial autoregressive models. Using simulations, we show that the method is
able to identify correctly covariates and spatial patterns present in the data.

We use our method to evaluate the robustness of growth determinants across European
regions for the period from 1995 to 2005 and, in particular, to estimate the speed of income
convergence. We show that the choice of a type of speci�cation in terms of a particular class of
spatial weighting matrices can have an important e�ect on the estimates of the parameters
attached to the model covariates. We also show that estimates of the speed of income
convergence across European regions depend strongly on the form of the spatial patterns
which are assumed to underly the dataset. When we take into account this dimension of
model uncertainty, the posterior distribution of the speed of convergence parameter has
a large probability mass around a rate of convergence of approximately 1%, half of the
value which is usually reported in the literature. Our results indicate that previous research
concerning the regional speed of income convergence in models which condition on single
spatial link matrices tended to overestimate the catching-up process in income levels.

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers.

Barro, R. J. (1991). Economic Growth in a Cross Section of Countries. The Quarterly

Journal of Economics, 106, No. 2:407�443.

Barro, R. J. and Sala-i-Martin, X. (1991). Convergence across States and Regions. Brookings
Papers on Economic Activity, 1:107�182.

Barro, R. J. and Sala-i-Martin, X. (2003). Economic Growth. MIT Press.

Bernardo, J. and Smith, A. (1994). Bayesian Theory. John Wiley and Sons, New York.

Boldrin, M. and Canova, F. (2001). Inequality and Convergence in Europe's Regions: Re-
considering European Regional Policies. Economic Policy, 16:205�253.

20



Crespo Cuaresma, J., Doppelhofer, G., and Feldkircher, M. (2009). The determinants of
economic growth in European regions. Working Papers 2008-26, Faculty of Economics

and Statistics, University of Innsbruck, and CESifo Working Paper Series.

Egger, P. and Pfa�ermayr, M. (2006). Spatial Convergence. Papers in Regional Science, 85
(2):199�215.

Feldkircher, M. and Zeugner, S. (2009). Benchmark Priors Revisited: On Adaptive Shrink-
age and the Supermodel E�ect in Bayesian Model Averaging. IMF Working Paper,
WP/09/202.

Fernández, C., Ley, E., and Steel, M. F. (2001a). Benchmark Priors for Bayesian Model
Averaging. Journal of Econometrics, 100:381�427.

Fernández, C., Ley, E., and Steel, M. F. (2001b). Model Uncertainty in Cross-Country
Growth Regressions. Journal of Applied Econometrics, 16:563�576.

Fischer, M. and Stirböck, C. (2006). Pan-European Regional Income Growth and Club-
Convergence. Insightsfrom a Spatial Econometric Perspective. Annals of Regional Science,
40(3):1�29.

Foster, D. P. and George, E. I. (1994). The Risk In�ation Criterion for Multiple Regression.
The Annals of Statistics, 22:1947�1975.

Getis, A. and Gri�th, D. A. (2002). Comparative Spatial Filtering in Regression Analysis.
Geographical Analysis, 34:2:130�140.

Kass, R. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and
its relationship to the Schwarz criterion. Journal of the American Statistical Association,
pages 928�934.

Koop, G. (2003). Bayesian Econometrics. John Wiley & Sons.

LeSage, J. and Pace, R. (2009). Introduction to Spatial Econometrics. Chapman & Hall,
CRC.

LeSage, J. P. and Fischer, M. (2008). Spatial Growth Regressions, Model Speci�cation,
Estimation, and Interpretation. Spatial Economic Analysis, 3:275�304.

LeSage, J. P. and Parent, O. (2007). Bayesian Model Averaging for Spatial Econometric
Models. Geographical Analysis, 39:3:241�267.

Ley, E. and Steel, M. F. (2009). On the E�ect of Prior Assumptions in Bayesian Model
Averaging with Applications to Growth Regressions. Journal of Applied Econometrics,
24:4:651�674.

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures of g
Priors for Bayesian Variable Selection. Journal of the American Statistical Association,
103:410�423.

21



Mathunjwa, J. S. and Temple, J. (2007). Convergence behaviour in exogenous growth mod-
els,. Bristol Economics Discussion Papers, 06/590.

Niebuhr, A. (2001). Convergence and the E�ects of Spatial Interaction. Jahrbuch für Re-

gionalwissenschaft, 21:113�133.

Raftery, A. E. (1995). Bayesian Model Selection in Social Research. Sociological Methodology,
25:111�163.

Sala-i-Martin, X. (1996). Regional Cohesion: Evidence and Theories of Regional Growth
and Convergence. European Economic Review, 40:1325�52.

Sala-i-Martin, X., Doppelhofer, G., and Miller, R. I. (2004). Determinants of Long-Term
Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. American Eco-

nomic Review, 94:813�835.

Schwarz, G. (1978). Estimating the Dimensions of a Model. Annals of Statistics, 6(2):461�
464.

Tiefelsdorf, M. and Gri�th, D. A. (2007). Semiparametric �ltering of spatial autocorrelation:
the eigenvector approach. Environment and Planning A, 37:1193�1221.

Tiefelsdorf, M., Gri�th, D. A., and Boots, B. (1999). A variance-stabilizing coding scheme
for spatial link matrices. Environment and Planning A, 31:165�180.

22



Technical Appendix

Priors over the parameter space conditional on a model speci�cation

BMA belongs to the class of shrinkage estimators, where shrinkage over models is governed
by the parameter g, which elicits our prior over slope parameters. The choice of g is thus
crucial for posterior inference. Fernández et al. (2001a) propose an automated way to choose
g based on an exhaustive simulation study. The benchmark prior advocated by Fernández
et al. (2001a) amounts to setting g = max(N,K2). This prior structure bridges between
the unit information prior (UIP, g = N) proposed by Kass and Kass and Wasserman (1995)
and the risk information criterion (RIC, g = K2) by Foster and George (1994). The use of
UIP implies that the Bayes factor can be interpreted asymptotically (and therefore approxi-
mated) as the di�erence of the Schwarz information criterion (Schwarz (1978)) values for the
two corresponding models. Other approaches include mixtures of g-priors and variants of the
Zellner-Siow prior (Liang et al. (2008)). Throughout the paper we use the benchmark prior
in Fernández et al. (2001a), which implies that for the setting in our empirical application
the RIC is preferred when choosing g.

Priors over the model space

A prior over models in M has to be chosen in order to obtain BMA estimates of the pa-
rameters. Two typical prior speci�cations have been usually imposed in the literature: a) an
uninformative �at prior over all models, which implies that the posterior odds ratio resem-
bles solely the Bayes factor and comparison of models is governed by their relative marginal
likelihoods, and b) a prior that discriminates among models according to the number of re-
gressors they include, so that a larger prior probability mass falls over models of a given size
(see Sala-i-Martin et al. (2004)). This second alternative is instrumentalized by assuming
that each covariate enters the regression with probability ϑ, which implies that the prior
mass for model j which includes kj variables (in addition to the eigenvectors used for spatial
�ltering) amounts to p(M z

j ) = ϑkj(1− ϑ)K−kj . The uninformative prior in a) is nested in b)
by imposing ϑ = 1/2, which results into equal model probabilities of 2−K for all models for
each spatial matrix, thus 2−K×Z is the prior inclusion probability of each model in our case.

Ley and Steel (2009) show that �xing ϑ = 1/2 puts most mass on models withK/2 regressors,
since they are dominant in number. Their recommendation is thus to treat ϑ as random
and placing a (hyper)prior on it. The proposal of Ley and Steel (2009) is to impose that
the model size follows a Binomial-Beta(a, b) distribution (Bernardo and Smith (1994)) with
a = 1, so that

P (k = kj) =
Γ(1 + b)

Γ(1) + Γ(b) + Γ(1 + b+K)

(
K

kj

)
Γ(1 + kj)Γ(b+K − kj) kj = 0, . . . , K. (9)

The prior can be elicited by anchoring the prior expected model size, m.12 Ley and Steel
(2009) quantify the in�uence that a poorly speci�ed prior exerts on posterior results when ϑ

12Note that b is then implicitly de�ned through b = (K −m)/m.
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is �xed, which leads to the relative merits of BMA being less pronounced and its predictive
power deteriorating. In contrast, the results in Ley and Steel (2009) indicate that the choice
of m has no in�uential impact on posterior inference and the prior over models is purely
non-informative.
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Data Appendix

Country Region
Austria Burgenland Salzburg

Kärnten Steiermark
Niederösterreich Tirol
Oberösterreich Vorarlberg
Wien

Belgium Prov. Antwerpen Prov. Luxembourg (B)
Prov. Brabant Wallon Prov. Namur
Prov. Hainaut Prov. Oost-Vlaanderen
Prov. Liège Prov. Vlaams Brabant
Prov. Limburg (B) Prov. West-Vlaanderen
Région de Bruxelles-Capitale

Bulgaria Severen tsentralen Yugoiztochen
Severoiztochen Yugozapaden
Severozapaden Yuzhen tsentralen

Cyprus Cyprus
Czech Republic Jihovýchod Severozápad

Jihozápad Strední Cechy
Moravskoslezsko Strední Morava
Praha Severovýchod

Denmark Denmark
Estonia Estonia
Finland Åland Länsi-Suomi

Etelä-Suomi Pohjois-Suomi
Itä-Suomi

France Alsace Île de France
Aquitaine Languedoc-Roussillon
Auvergne Limousin
Basse-Normandie Lorraine
Bourgogne Midi-Pyrénées
Bretagne Nord - Pas-de-Calais
Centre Pays de la Loire
Champagne-Ardenne Picardie
Corse Poitou-Charentes
Franche-Comté Provence-Alpes-Côte d'Azur
Haute-Normandie Rhône-Alpes

Germany Arnsberg Lüneburg
Berlin Mecklenburg-Vorpommern
Brandenburg - Nordost Mittelfranken
Brandenburg - Südwest Münster
Braunschweig Niederbayern
Bremen Oberbayern
Chemnitz Oberfranken
Darmstadt Oberpfalz
Detmold Rheinhessen-Pfalz
Dresden Saarland
Düsseldorf Schleswig-Holstein
Freiburg Schwaben
Giessen Stuttgart
Hamburg Thüringen
Hannover Trier
Karlsruhe Tübingen
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Kassel Unterfranken
Koblenz Weser-Ems
Köln Leipzig

Greece Anatoliki Makedonia, Thraki Kriti
Attiki Notio Aigaio
Dytiki Ellada Peloponnisos
Dytiki Makedonia Sterea Ellada
Ionia Nisia Thessalia
Ipeiros Voreio Aigaio
Kentriki Makedonia

Hungary Dél-Alföld Közép-Dunántúl
Dél-Dunántúl Közép-Magyarország
Észak-Alföld Nyugat-Dunántúl
Észak-Magyarország

Ireland Border, Midlands and Western
Southern and Eastern

Italy Abruzzo Molise
Basilicata Piemonte
Calabria Bolzano-Bozen
Campania Trento
Emilia-Romagna Puglia
Friuli-Venezia Giulia Sardegna
Lazio Sicilia
Liguria Toscana
Lombardia Umbria
Marche Valle d'Aosta
Veneto

Latvia Latvia
Lithuania Lithuania
Luxembourg Luxembourg (Grand-Duché)
Malta Malta
Netherlands Drenthe Noord-Brabant

Flevoland Noord-Holland
Friesland Overijssel
Gelderland Utrecht
Groningen Zeeland
Limburg (NL) Zuid-Holland

Poland Dolnoslaskie Podkarpackie
Kujawsko-Pomorskie Podlaskie
Lódzkie Pomorskie
Lubelskie Slaskie
Lubuskie Swietokrzyskie
Malopolskie Warminsko-Mazurskie
Mazowieckie Wielkopolskie
Opolskie Zachodniopomorskie

Portugal Alentejo Lisboa
Algarve Norte
Centro (PT)

Romania Bucuresti - Ilfov Sud - Muntenia
Centru Sud-Est
Nord-Est Sud-Vest Oltenia
Nord-Vest Vest

Slovak Republic Bratislavský kraj Východné Slovensko
Stredné Slovensko Západné Slovensko
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Slovenia Slovenia
Spain Andalucia Extremadura

Aragón Galicia
Cantabria Illes Balears
Castilla y León La Rioja
Castilla-la Mancha Pais Vasco
Cataluña Principado de Asturias
Comunidad de Madrid Región de Murcia
Comunidad Foral de Navarra Comunidad Valenciana

Sweden Mellersta Norrland Sm
◦
aland med öarna

Norra Mellansverige Stockholm
Östra Mellansverige Sydsverige
Övre Norrland Västsverige

United Kingdom Bedfordshire, Hertfordshire Kent
Berkshire, Bucks and Oxfordshire Lancashire
Cheshire Leicestershire, Rutland and Northants
Cornwall and Isles of Scilly Lincolnshire
Cumbria Merseyside
Derbyshire and Nottinghamshire North Yorkshire
Devon Northern Ireland
Dorset and Somerset Northumberland, Tyne and Wear
East Anglia Outer London
East Riding and North Lincolnshire Shropshire and Sta�ordshire
East Wales South Western Scotland
Eastern Scotland South Yorkshire
Essex Surrey, East and West Sussex
Gloucestershire, Wiltshire and Tees Valley and Durham
North Somerset
Greater Manchester West Midlands
Hampshire and Isle of Wight West Wales and The Valleys
Herefordshire, Worcestershire and Warks West Yorkshire
Inner London

Table 6: European regions in the sample
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Variable name Description Source

Dependent variable
gGDPCAP Growth rate of real GDP per capita Eurostat

Factor accumulation/convergence
GDPCAP0 Initial real GDP per capita (in logs) Eurostat
gPOP Growth rate of population Eurostat
shGFCF Share of GFCF in GVA Cambridge Econometrics

Infrastructure
INTF Proportion of �rms with own website ESPON
TELH A typology of levels of household ESPON

telecommunications uptake
TELF A typology of estimated levels of ESPON

business telecommunications access and uptake
Seaports Regions with seaports ESPON
AirportDens Airport density ESPON
RoadDens Road density ESPON
RailDens Rail density ESPON
ConnectAir Connectivity to commercial airports by car ESPON
ConnectSea Connectivity to commercial seaports by car ESPON
AccessAir Potential accessibility air ESPON
AccessRoad Potential accessibility road ESPON

Socio-geographical variables
Settl Settlement structure ESPON
OUTDENS0 Initial output density
EMPDENS0 Initial employment density
POPDENS0 Initial population density
RegCoast Coast ESPON
RegBorder Border ESPON
RegPent27 Pentagon EU 27 plus 2 ESPON
RegObj1 Objective 1 regions ESPON
Capital Capital city
Airports Number of airports ESPON
Temp Extreme temperatures ESPON
Hazard Sum of all weighted hazard values ESPON
Distde71 Distance to Frankfurt
DistCap Distance to capital city

Technological innovation
PatentT Number of patents total Eurostat
PatentHT Number of patents in high technology Eurostat
PatentICT Number of patents in ICT Eurostat
PatentBIO Number of patents in biotechnology Eurostat
PatentShHT Share of patents in high technology Eurostat
PatentShICT Share of patents in ICT Eurostat
PatentShBIO Share of patents in biotechnology Eurostat
HRSTcore Human resources in science and technology (core) Eurostat LFS

Human capital
ShSH Share of high educated in working age population Eurostat LFS
ShSL Share of low educated in working age population Eurostat LFS

29



ShLLL Life long learning Eurostat LFS

Sectoral structure/employment
ShAB0 Initial share of NACE A and B Eurostat

(Agriculture)
ShCE0 Initial share of NACE C to E Eurostat

(Mining, Manufacturing and Energy)
EREH0 Employment rate - high Eurostat LFS
EREL0 Employment rate - low Eurostat LFS
ERET0 Employment rate - total Eurostat LFS
URH0 Unemployment rate - high Eurostat LFS
URL0 Unemployment rate - low Eurostat LFS
URT0 Unemployment rate - total Eurostat LFS
ARH0 Activity rate high Eurostat LFS
ARL0 Activity rate low Eurostat LFS
ART0 Activity rate total Eurostat LFS

Table 7: Variables, description and sources. Data are from ESPON
(European Spatial Planning Observation Network, www.espon.eu),
Eurostat and Eurostat LFS (Eurostat Labor Force Survey,
http://epp.eurostat.ec.europa.eu/)
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