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Abstract 

 

The aim of this article is to realize a comparative methodological exercise of two APC estimators: the 
conventional restrict estimator obtained by the generalized linear models (REGLM) and the so-called 
intrinsec estimator (EI). The object of our interest are the contributions of age, period and cohort effects to 
temporal changes in the progression probabilities to the first grade of Elementary School for the brazilian 
women. The APC modelling of grade progression probabilities is justified as age, period and cohort effects 
may signficantly affect school transitions: age effects reflect both the mininal age of school entry as the trade-
off between study and work, which becames strong along the educacional carrier; period effects are 
associated with different economical and political conjuctures, as well as with the state of the educational 
policies; finally, cohort effects reflect social attributes proper of some group of individuals. Both instruments 
were contraposed in terms of the efficiency and significance of the parameters. The results reveal the 
potentiality of the solution to the age-period-cohort model based on intrinsec estimator, which presents 
excelent statistical properties, namely: small variance and a large number of significative parameters. 
Therefore, projections of grade progression probabilities based on this estimator may be very promissing.  
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1  Introduction 

The application of age-period-cohort models (APC) has been the subject of intense debate in demography 
since 1970, especially from the work (Mason et al., 1973). Shortly, these models seek to evaluate to what 
extent a phenomenon of interest was being determined by period, age and cohort variations in the period. 
Effects of age are generally associated with age differentals in the risk of observing some characteristic. 
Furthermore, age may reflect the evolution of biological, psychological and social change in the roles of each 
age group. The effects of period, on the other hand, reflect changes in the phenomenon of interest that affect 
neutraly all age groups. In general, period variations give us a measure of environmental, economic and social 
laws. Finally, cohort effects may reflect changes between a group of individuals of the same age. These 
effects can be represented by genetic or social change (Rodgers, 1982; Halli and Rao 1992; Yang, Fu and 
Land, 2004). 

The main controversy in APC modelling is the choice of the estrategy to deal with the so-called identification 
problem. Since there is a linear dependence between age, period and cohort (period = age + cohort), the 
design matrix XTX is singular, i.e., the inverse of XTX does not exist. Therefore, the estimable solution to this 
equation is not unique and it is not possible to estimate the three separate effects without imposing 
identification restrictions. The usual strategy for identification is the imposition of an equality of the 
parameters of the model (Fienberg and Mason, 1985). However, this solution has received much criticism, 
which tend to strengthen that the choice of identifying restrictions are ad hoc or even atheoretical (Smith, 
2004). 

Biostatistics researchers have made a meaningful contribution to this literature by estimating functions that 
would be invariant to identification restrictions on the APC parameters. One of these developments was the 
so-called intrinsic estimator (IE), described by Yang, Fu and Land (2004). This estimator is based on 
estimable functions of the singular value decomposition of matrices, and provides unique solutions for age, 
period and cohort estimators. In addition, the intrinsic estimator requires for the model identification minimal 
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assumptions or prior information. Moreover, the authors showed that the IE has many desirable statistical 
properties in the APC analysis with fixed periods of time (Yang, Fu and Land, 2004; Yang, 2008). 

The aim of this paper is, therefore, a methodological comparison exercise of two APC estimators: the 
restricted estimator obtained by conventional generalized linear models (REGLM) and the intrinsic estimator 
(IE). The two instruments were compared in terms of the estimated parameters, the fit to the observed values 
and model efficiency. Of our interest are the contributions of the age, period and cohort effects on the 
temporal changes in the progression probability to the first grade of elementary school to women. The APC 
modeling of grade progression probabilities in the field of Demography of Education has a clear substantive 
interpretation: effects of age reflect the minimum age for entry into the education system as well as the 
dilemma between work and study that comes along the educational career, period effects are associated the 
different economic and political conjucture, as well as with the state of the educational policies and, finally, 
cohort effects reflect social characteristics peculiar to certain groups of students. 

The choice in this study of studying the progression probability to the first grade of elementary school was 
due to the fact that the temporal changes in the chances of progression in this educational grade were 
responsible for most of the variation in average years of schooling of the brazilian population between 1981 
and 2008, as we demonstrated in our previous work (Guimarães, 2010). Moreover, it was found that exists in 
Brazil a difference by sex in the behavior over time of the progression probabilities. Thus, we opted for the 
assessment of the women progression probabilities. 

Besides of its great substantive importance, the APC analysis of grade progression probabilities (GPP) has an 
important applicability to the development of educational projections. Once it is shown that there is a formal 
relationship between the GPP and the average years of schooling (Rios-Neto, 2004), a consistent modeling of 
GPP then allows the construction of feasible scenarios of future changes in its age, period and cohort 
components. From these estimated components it is possible to obtain the average years of schooling of the 
population in the future. In this sense, the comparison of methodologies acquires a fundamental importance to 
obtain educational projections that have good quality and accuracy. 

This article is organized into four sections, including this introduction. The second section presents a literature 
review of the APC model, particularly whose concerned with strategies and solutions to overcome the 
identification problem. The third section deals exclusively with intrinsic estimator described by Yang, Fu and 
Land (2004). The fourth section describes the data and methodological steps. The fifth section reports the 
procedures and results comparing the conventional restricted estimator and intrinsic estimator of the age, 
period and cohort effects of the temporal change in the women progression probability to the first grade of 
elementary school. The sixth section summarizes the evidence from this study and proposes an agenda for 
future research. 

2  The issue of identification in age-period-cohort models: a brief review 

The problem of identification within the APC framework can be described as follows. Consider a general 
linear model whose dependent variable is a demographic rate Tij, expressed in terms of the ratio between the 
number of occurrences Oij  and the number of individuals at risk Eij  for each age group i e period j: 

 ij
ij i j k ij

ij

O
T

E
µ α β γ= = + + + +   (1) 

In this model, i=1,...,a indexes the age group, j=1,...,p indexes the period e k=a+p−1 identifies the cohort. 
Furthermore, εij is the disturbance term with zero expectance. 

The model falls within the Generalized Linear Models class (GLM). According to Rios-Neto and Oliveira 
(1999), a GLM is constructed from a choice of a appropriate link function to the phenomenon of interest and 
of a probability distribution for the dependent variable. 
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In this paper, we treat grade progression probability as a dichotomous variable that has a binomial 
distribution. That is, for each combination of age-period in this study we have the absolute frequency of those 
who had progressed in a particular school transition and those who had not. From these quantities we derive 
the chances of progressing in relation to not progressing. The canonical connection is then performed by the 
logistic function, resulting in a logit model as follows:  

( )
1

ij
ij i j k ij

ij

p
e log

p
µ α β γ= = + + + +

−
  (2) 

Where eij expresses the logarithm of the odds ratio of school progression in a transition to a certain age group 
and period and pij is the progression probability in cell i, j. According to Yang, Fu and Land (2004), model 2 
can only be operationalized through the centralization of the parameters or by imposing an identification of 
one of the categories of the age, period and cohort covariates as the reference category. 

Once is chosen the operationalizations for the model, we can rewrite the second model in terms of a general 
linear equation, where Y represents the logarithm of the chance of progression in each cell, X is the matrix 
consisting of indicator variables with dimension m = 1 + (a-1) + (p-1) + (a + p-2) and ε is the vector of 
random error: 

 Y X β ε= +  (3) 

The numerical solution to obtain the sample parameters for β by maximum likelihood in the model 3 can be 
described by: 

 ( ) ( )1T Tb X X X X
−

=  (4) 

The key issue is that there is not only one possible vector of estimated coefficients for model 3. This is 
because XTX is not invertible (singular matrix), due to a perfect linear relationship between the effects of age, 
period and cohort. This impasse is called in the literature of as identification problem. Therefore, it becomes 
impossible to separate the estimated effects of cohort, age and period without imposing additional restrictions 
on the model coefficients, ie, beyond the centralization or the adoption of reference categories. 

A intense debate, then, emerged in the social sciences and epidemiology concering the best identification 
restriction that should be adopted in the APC model. Mason et al. (1973) and Fienberg and Mason (1985) 
were the first researches that proposed a solution to this problem. According to the authors, a strategy to make 
the matrix XTX invertible and thus obtain a unique solution for the parameters, would be imposing an equality 
constraint on the coefficient vector β. Thus, it would be sufficient to admit that the coefficients of the first and 
second period, or first and second cohort, or the first and second age group, for example, were equal. 

Recent literature that addresses the identification problem has received significant contributions from 
biostatistics and epidemiology. In one of the lines of this branch of study that employs estimable functions, we 
find the so-called intrinsic estimator. He was introduced by Fu, Knight and Fu, Fu, Hall, and Rohan (apud 
YANG, FU; LAND, 2004) and is based on the singular value decomposition of matrices. Also, this method 
provides robust estimators of the effects of age, period and cohort. Since this method is of central interest in 
this article, the formalization of this method will be presented in the next section. 

3  The Intrinsec Estimator (IE) 

In this section we formalize the construction of the intrinsic estimator described by Yang, Fu and Land (2004), 
Yang (2008), Yang et al. (2008), as well as their statistical properties. Consider the APC general linear model 
(Equation 3). There the linear dependence between the effects of age, period and cohort can be represented in 
a matrix form as follows, from a non-null vector B0: 

 0 0XB =  (5) 
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Equation 5 results of the fact that the matrix X is singular, ie, there is some linear combination of columns of 
the design matrix X that results in a zero vector. In terms of Linear Algebra, it is said that the matrix X does 
not have a full rank. 

Kupper et al. (apud YANG, FU; LAND, 2004) showed that, if a matrix has a less-than- a- full rank, its 
parametric space can be decomposed into the direct sum of two linear subspaces that are mutually 
perpendicular: 

 P N T= ⊕  (6) 

Where ⊕ represents the direct sum of two linear subspaces N and T, which are perpendicular to each other. N 
is the null space with a dimension X measured by the vector sB0 with a real number s and τ is the 
complementary orthogonal subspace N. Due to this orthogonal decomposition of parametric space, each of the 
infinite solutions of the unrestricted APC model can be written as: 

 0b̂ B SB= +  (7) 

Where S is a scalar corresponding to a specific solution to the problem of identifying and B0 is an eigenvector 
of norm 1 or Euclidean length 1. Yang, Fu and Land (2004) argue that this eigenvector B0is independent of 
observed rates Y, and hence is completely determined by the number of age groups and time periods, ie, B0 
has a specific form that is solely a function of the design matrix X. 

Kupper et al. (Apud YANG, FU; LAND, 2004) showed that B0 has the following form: 0
0

0

BB
B

=


‖ ‖
 (8) 

The direct implication of equation 8 is that B0 is the normalized vector of 0B which corresponds to: 

 0 (0, , , )TB I P C=  (9) 

Where: 

1 1(1 ,···,[ 1] )
2 2

i iI a+ +
= − − − , 

1 1( 1,···, [ 1])
2 2

p pP p+ +
= − − − ,  

(1 ,···,[ 2] )
2 2

i p i pC a p+ +
= − + − −   

and i, p e c denote, respectively, age groups, periods and cohorts. Yang, Fu e Land (2004)  underscore the 
main issue of equation 9 is that the vector B0 is fixed, ie, it is independent of the response variable Y and, 
therefore, has no role in determining the model coefficients. However, when any restriction is imposed on the 
coefficients vector, as it is proposed by Fienberg and Mason (1985), then this principle is violated in the sense 
that s in the equation 6 assumes a nonzero value. 

Therefore, it can be shown that any conventional APC model can be described by a constraint on the 
identification of design matrix X, according to equation 6, and B is called the intrinsic estimator. This 
estimator is orthogonal to the null space and is determined by the generalized inverse of Moore-Penrose. 

Fu, Hall e Rohan (2004) and Yang, Fu and Land (2004) described  mathematically some statistical properties 
of the intrinsic estimator. Following the authors, the first statistical advantage of IE is that it satisfies the 
condition for estimating linear functions of the parameter vector b. This is a positive result of the approaches 
based on estimable functions: they are invariant with respect to which the solution to normal equations are 
obtained. Moreover, these functions should be desirable as statistical estimators since they are linear functions 
of the unidentified parameter vector, and the latter that can be estimated without bias - in other words, the IE 
provides unbiased estimators of age, period and cohort effects of. It is worth to mention that this condition, 
properly formalized by Kupper et al. (apud YANG, FU; LAND, 2004) implies that any restricted estimator, ie, 
that which is obtained by imposing equality constraints on the vector of parameters, will always produce 
biased estimates of age, period and cohort effects. In summary, the first statistical property of IE is that it 
produces non-biased estimates of coefficients in the APC framework for the analysis of population rates 
considering fixed finite time periods p. The asymptotic property of the intrinsic estimator suggests that, as the 
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number of periods increases, the arbitrariness of the many possible estimators for REGLM is removed and 
these estimators converge to the intrinsic estimator B (Yang, Fu and Land 2004). 

Secondly, it was shown that IE is more efficient than the concentional restricted estimator - ie, has lower 
variance. other words, for any finite number p of time periods, the intrinsic estimator B has a smaller variance 
than any other restricted estimator MLGR.Thus, it is possible to derive that ( ) ( )ˆvar b var B−  is a defined and 

positive function for any non-trivial constraint identification (Yang, Fu and Land 2004). Another important 
property of the intrinsic estimator is that it is asymptotically consistent, ie, when p →∞  it converges to the 
true parameters that generated the sequence of  APC rates. 

One limitation, however, still persists in the IE solution for the APC models. The intrinsic estimator, although 
resulting in different coefficients of GLM framework - ie, free of any bias - will present the same set of 
quality measuresof the latter, such as log-likelihood and deviance. Therefore, these measures should not be 
used to select the best APC model (Yang et al., 2008). 

4  Data and Methods 

For this exercise we use brazilian microdata from PNAD-IBGE in the period between 1981 and 2008. 
Although the PNAD does not have a panel survey design, ie, which tracks individuals over time, their analysis 
in the context of the APC model is plausible. This is true as we should follow each cohort over repeated 
surveys, looking at the cohort members who were randomly selected in each year of the survey (Oliveira, 
2002). Thus, for example, individuals who were 7 years old in 1981 would have eight years in 1982, and so 
on. 

The individuals of our interest were that aged 7 to 29 years, since it is required for the study of school 
transition that the individuals were exposed to the risk of completing the educational grade. Thus, we have 20 
unit intervals of age × 28 periods. As the PNAD series has three discontinuities (1991, 1994 and 2000), we 
used a linear interpolation of the number of individuals promoted and at risk and in adjacent years in order to 
complete the series. 

For estimation of the model, we employed a logistic function as the canonical link. The choice of this 
functional form of the model aimed to ensure that the predited odds of grade progression were restricted to the 
interval (0.1). The estimation method used was maximum likelihood. 

With respect to the model specification, we estimate the age-period-cohort model in its complete form, in 
order to check the differences between IE and REGLM methodologies and evaluate the substantive 
importance of the effects of age, period and cohort for the grade progresion probability. We kept in mind, 
however, that the ideal procedure would be to test the importance of each variable, starting from a null model, 
and then adding one by one of the variables of age, period and cohort and assess their significance, using the 
deviance statistic and R-squared. Another important procedure in the APC analysis that was not implemented 
in this paper was the test for interactive effects between age, period and cohort, or even the inclusion of 
quadratic terms quadratic terms. However, because this is an comparative-exercise article, we were interested 
not primarily in reaching a perfect fit to the data, but rather to verify the potential of each framework for the 
estimation of a APC model in its complete form. 

For estimation of the intrinsic estimator model we employed the algorithm provided in STATA by 
Schulhofer-Wohl and Yang (2006). These authors point out that in the algorithm to compute the intrinsic 
estimator uses the constraint the constraint that the sum of the coefficients is zero. For computational 
purposes, the algorithm creates indicator variables for age, period and cohort variables in the design matrix X, 
but one of the categories of each of them is omitted. After the principal components regression estimation, 
however, the restriction that the parameters should be zero-sum allows the researcher to get estimates for the 
omitted categories. Note that this does not occur in the REGLM framework. 

In order to estimate the generalized linear model, we employed the algorithm glm also available in STATA 
(StataCorp 2007). Our identification strategy was the imposition of the two oldest cohorts should have the 
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same coefficients (ie, cohorts of 1952 and 1953 would have equal APC effects.) It is considered that this 
alternative is plausible since it can be assumed that the two oldest cohorts have not gone through a significant 
process of social change. We believe that the APC effects fot the two most recent periods could not be 
assumed as equal as several educational policies were recently adopted in Brazil. We had not had na intention 
here to restrict the age parameters, because we assume that the behavior of age-progression is unique and of 
substantive interest, because the change in odds of progression by age in a given school transition may be 
reflectinf the chronic pattern of age-grade-distortion in brazilian education. 

5  Results 

We report in this section the results of the age-period-cohort estimates for the progression probability to the 
first grade of elementary school of brazilian women and compare the performance of the intrinsic estimator 
and the restricted estimator (with the assumption that the two older cohorts were equal). The values of 
estimated coefficients and statistics for goodness of fit of the two models are reported in Table A.1 
(Appendix). It is noteworthy that, as explained in section 3, the two models have the same measures of 
goodness of fit (deviance, AIC, BIC and log-likelihood), and therefore employment of these criteria in 
selecting the best model is infeasible.  The main evidences from this table is that the Intrinsec Estimator 
coefficients were more efficient than the Restricted Estimator ones. 94 coefficients were estimated by IE, and 
79 of them were statistically significant at a 5% level. On the other hand, of a total of 90 coefficients 
estimated by RE, only 13 of them were significant at this level. 

Figure 1 reports the estimated coefficients of the IE and REMLG age-period-cohort models. By the graphical 
analysis we try to verify to what extent the parameter estimates derived from each method are discrepant. It is 
worth mentioning that in the estimation of the model, the IE uses the constraint that the sum of the coefficients 
of age, period and cohort is equal to zero. In turn, the REGLM uses the restriction to omit a reference 
category, where the first category of age, period and cohort. Therefore, to maintain comparability between the 
coefficients of the two models, the REGLM model parameters were centered around the average of the 
coefficients of age, period and cohort. This procedure is known as effect coding, and from there, the intercept 
is equal to the global average and the intercept for each variable expresses the difference between the group 
and overall average (Hosmer and Lemeshow, 2000). 

Comparing the magnitude of the estimated coefficients for the probability progression to the first grade of 
elementary school of Brazilian women, we realized that the age effects showed little difference between the 
methods (Figure 1a), while the effects of period (Figure 1b), and cohort (Figure 1c) showed quite different 
magnitudes. A substantive analysis of the behavior of the coefficients of age period and cohort reveals 
interesting sources of variations on the observed progression probabilities. We note, first, that the probability 
progression to the first grade of elementary school of Brazilian women is very low for women aged 7, and 
then rises at an accelerated rate until the women reaches 14 years old, and since then it stabilizes (Figure 1a ). 
This pattern by age of the grade progression probability is consistent with the high standard of holding back 
students in Brazil, due to the fact that individuals tend not to complete the first grade on the appropriate age 
(Rios-Neto et al. 2010). The period effects obtained by the intrinsic estimator indicate a increase in the 
probability progression to the first grade of elementary school of Brazilian women, and this behavior is 
consistent with the expansion of primary education that occurred in Brazil (Figure 1b). Finally, the cohort 
effects behave increasingly and unstable until 1994, when it reaches its greatest magnitude (Figure 1c). 

We now examine the efficiency of both methods through the comparison of the magnitude of the confidence 
intervals. We saw in section 3 that has been shown mathematically that the IE has less variance than either 
estimator REGLM, ie, any estimator REGLM obtained by restriction of identification. To investigate this 
assertion in the study of the probability progression to the first grade of elementary school of Brazilian 
women, we build graphs showing the behavior of the estimated coefficients for IE and the REGLM with their 
respective confidence intervals at a 95% level. 

It is possible to conclude by Figures 2, 3 and 4 that, in fact, the intrinsic estimator is more efficient - ie, has a 
smaller variance - than REGLM, both for the age, period and cohort effects. When analyzing the graphs for 
the effects of age, we found that the intrinsic estimator has an excellent efficiency in relation to REGLM. The 
variance in EI, however, increases when the coefficients for period or cohort are not significant, yet in fact this 
estimator has a smaller variance than the REGLM. 
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It is noteworthy that the use of parameters with small variance in the APC model is very important and 
desirable for educational projections based on GPP, so that any extrapolation of the estimates standard error 
based on the intrinsic estimator will tend to be quite efficient. 

6  Final remarks 

Age-period-cohort model have a strong tradition in Demography. In this article, we sought to analyze the APC 
research on the different sources of variation in the probability progression to the first grade of elementary 
school of Brazilian women.  

This article has, however, a strong methodological character. We sought to compare two methods, the first 
being the usual demographic literature procedure, based on the work of Fienberg and Mason (1985), which we 
named restricted estimator by generalized linear models (REGLM), and a methodology that has emerged from 
recent advances in epidemiology, called the intrinsic estimator (IE). It was argued in the literature that the 
solution based on EI addresses a solution to a great impasse regarding the identification problem in the APC 
framework. The major innovation of this estimator is that, through the decomposition of parametric space of 
the APC unrestricted model (ie, the non identified model), this particular estimator B can be derived by both 
the projection method as by the principal components regression method. Moreover, another uniqueness of 
this estimator is that the only restriction necessary is based on the orientation of the estimator in the 
parametric space, which depends crucially on the design matrix X fixed, ie, the number of periods and age 
groups. 

We have also seen that the intrinsic estimator presents, according to the literature, excellent statistical 
properties. To a large extent, our empirical evidence corroborate this evidence. In addition to presenting the 
estimated parameters consistent with the historical evolution of educational policies in Brazil and converge to 
the true values of parameters in large samples, this estimator is more efficient than the restricted estimators 
based on generalized linear models (REGLM). In turn, the majority of the estimators for REGLM with the 
assumption that the parameters of the two oldest cohorts were equal were not statistically significant and had a 
greater variance than the intrinsec estimators. 

Given all this, we argue that the intrinsic estimator presents itself indeed as a powerful tool in the APC 
framework. Therefore, the construction of probabilistic projections of GPP based in those estimators proves 
promising. This is the next step we intend to implement in future articles. Therefore, it is necessary to proceed 
with a step-by-step construction of the best APC model to our educational data, testing for inclusion of each 
indicator variables of age, period and cohort, comparing the fit of the models and the testing for the inclusion 
of variables interactive or quadratic terms. 
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Figure 1: Comparison between the estimated values of age, period and cohort effects by the Intrinsec Estimator and Restricted Estimator. Progression probability 
to the first grade of elementary school. Brazilian women. 

 
(a) Age 

 
(b) Period 

 
(c) Cohort
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Figure 2: Comparison between the 95% confidence intervals for the age effects. Intrinsec 
versus Restricted estimator. Progression probability to the first grade of elementary 

school. Brazilian women. 

 
(a) Intrinsec Estimator (IE) 

 
(b) Restricted estimator (REGLM) 
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Figure 3: Comparison between the 95% confidence intervals for the period effects. 
Intrinsec versus Restricted estimator. Progression probability to the first grade of 

elementary school. Brazilian women. 

 
(a) Intrinsec Estimator (IE) 

 
(b) Restricted estimator (REGLM)
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Figure 4: Comparison between the 95% confidence intervals for the cohort effects. 
Intrinsec versus Restricted estimator. Progression probability to the first grade of 

elementary school. Brazilian women. 

 
(a) Intrinsec Estimator (IE) 

 
(b) Restricted estimator (REGLM) 
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Appendix 

 

Table A.1: Age-period-cohort estimates using Intrinsec Estimator, the Restricted 
Estimator by Generalized Linear Models and Ajusted Restricted estimator for the effect 
coding. Progression probability to the first grade of elementary school. Brazilian women. 

  IE REGLM 
Adjusted 
REGLM* 

age_7 - - 0,000 

   
- 

age_8 - - 0,000 

   
- 

age_9 - - 0,000 

   
- 

age_10 - - 0,000 

   
- 

age_11 -3,188 - 0,000 

 
[0,029] 

 
- 

age_12 -1,217 2,006 0,000 

 
[0,021] [0,150] [0,150] 

age_13 -0,546 2,713 0,000 

 
[0,023] [0,293] [0,293] 

age_14 -0,179 3,115 0,000 

 
[0,025] [0,438] [0,438] 

age_15 0,045 3,375 0,000 

 
[0,027] [0,583] [0,583] 

age_16 0,270 3,635 0,000 

 
[0,028] [0,728] [0,728] 

age_17 0,392 3,792 0,000 

 
[0,029] [0,873] [0,873] 

age_18 0,454 3,890 0,000 

 
[0,030] [1,018] [1,018] 

age_19 0,508 3,980 0,000 

 
[0,030] [1,163] [1,163] 

age_20 0,473 3,980 0,000 

 
[0,030] [1,308] [1,308] 

age_21 0,470 4,013 0,000 

 
[0,029] [1,453] [1,453] 

age_22 0,428 4,006 0,000 

 
[0,029] [1,598] [1,598] 

age_23 0,395 4,008 0,000 

 
[0,028] [1,744] [1,744] 

age_24 0,364 4,013 0,000 

 
[0,028] [1,889] [1,889] 
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age_25 0,323 4,007 0,000 

 
[0,027] [2,034] [2,034] 

age_26 0,251 3,971 0,000 

 
[0,027] [2,179] [2,179] 

age_27 0,224 3,979 0,000 

 
[0,027] [2,325] [2,325] 

age_28 0,289 4,081 0,000 

 
[0,027] [2,472] [2,472] 

age_29 0,245 4,072 0,000 

 
[0,027] [2,612] [2,612] 

period_1981 -0,656 - 0,000 

 
[0,028] 

 
- 

period_1982 -0,620 0,000 0,000 

 
[0,028] [0,145] [0,145] 

period_1983 -0,589 -0,005 0,000 

 
[0,028] [0,290] [0,290] 

period_1984 -0,573 -0,023 0,000 

 
[0,028] [0,435] [0,435] 

period_1985 -0,533 -0,019 0,000 

 
[0,029] [0,580] [0,580] 

period_1986 -0,502 -0,023 0,000 

 
[0,029] [0,725] [0,725] 

period_1987 -0,442 0,001 0,000 

 
[0,030] [0,870] [0,870] 

period_1988 -0,416 -0,009 0,000 

 
[0,030] [1,015] [1,015] 

period_1989 -0,378 -0,006 0,000 

 
[0,030] [1,160] [1,160] 

period_1990 -0,343 -0,007 0,000 

 
[0,031] [1,305] [1,305] 

period_1991 -0,306 -0,005 0,000 

 
[0,031] [1,450] [1,450] 

period_1992 -0,271 -0,006 0,000 

 
[0,031] [1,595] [1,595] 

period_1993 -0,250 -0,020 0,000 

 
[0,032] [1,741] [1,741] 

period_1994 -0,212 -0,018 0,000 

 
[0,032] [1,886] [1,886] 

period_1995 -0,176 -0,017 0,000 

 
[0,033] [2,031] [2,031] 

period_1996 -0,078 0,045 0,000 

 
[0,034] [2,176] [2,176] 

period_1997 -0,070 0,018 0,000 
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[0,034] [2,322] [2,322] 

period_1998 0,049 0,101 0,000 

 
[0,036] [2,467] [2,467] 

period_1999 0,106 0,123 0,000 

 
[0,036] [2,612] [2,612] 

period_2000 0,206 0,187 0,000 

 
[0,038] [2,757] [2,757] 

period_2001 0,317 0,263 0,000 

 
[0,039] [2,903] [2,903] 

period_2002 0,407 0,317 0,000 

 
[0,040] [3,048] [3,048] 

period_2003 0,563 0,438 0,000 

 
[0,042] [3,193] [3,193] 

period_2004 0,665 0,504 0,000 

 
[0,043] [3,338] [3,338] 

period_2005 0,795 0,599 0,000 

 
[0,045] [3,484] [3,484] 

period_2006 0,930 0,698 0,000 

 
[0,047] [3,629] [3,629] 

period_2007 1,169 0,902 0,000 

 
[0,051] [3,774] [3,774] 

period_2008 1,209 0,906 0,000 

 
[0,056] [3,920] [3,920] 

cohort_1952 -0,175 - 0,000 

 
[0,114] 

 
- 

cohort_1953 -0,210 - 0,000 

 
[0,081] 

 
- 

cohort_1954 -0,298 -0,052 0,000 

 
[0,066] [0,215] [0,215] 

cohort_1955 -0,350 -0,069 0,000 

 
[0,057] [0,349] [0,349] 

cohort_1956 -0,340 -0,023 0,000 

 
[0,051] [0,490] [0,490] 

cohort_1957 -0,317 0,035 0,000 

 
[0,048] [0,633] [0,633] 

cohort_1958 -0,262 0,126 0,000 

 
[0,045] [0,777] [0,777] 

cohort_1959 -0,210 0,213 0,000 

 
[0,043] [0,922] [0,922] 

cohort_1960 -0,151 0,308 0,000 

 
[0,041] [1,067] [1,067] 

cohort_1961 -0,103 0,392 0,000 

 
[0,040] [1,211] [1,211] 
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cohort_1962 -0,073 0,457 0,000 

 
[0,039] [1,356] [1,356] 

cohort_1963 -0,046 0,519 0,000 

 
[0,038] [1,501] [1,501] 

cohort_1964 0,026 0,626 0,000 

 
[0,038] [1,646] [1,646] 

cohort_1965 0,032 0,668 0,000 

 
[0,036] [1,791] [1,791] 

cohort_1966 0,035 0,706 0,000 

 
[0,035] [1,937] [1,937] 

cohort_1967 0,026 0,733 0,000 

 
[0,034] [2,082] [2,082] 

cohort_1968 0,048 0,791 0,000 

 
[0,033] [2,227] [2,227] 

cohort_1969 0,045 0,823 0,000 

 
[0,032] [2,372] [2,372] 

cohort_1970 0,063 0,877 0,000 

 
[0,032] [2,517] [2,517] 

cohort_1971 0,082 0,931 0,000 

 
[0,033] [2,662] [2,662] 

cohort_1972 0,089 0,974 0,000 

 
[0,034] [2,807] [2,807] 

cohort_1973 0,078 0,998 0,000 

 
[0,034] [2,953] [2,953] 

cohort_1974 0,086 1,042 0,000 

 
[0,035] [3,098] [3,098] 

cohort_1975 0,068 1,059 0,000 

 
[0,035] [3,243] [3,243] 

cohort_1976 0,102 1,129 0,000 

 
[0,036] [3,388] [3,388] 

cohort_1977 0,132 1,194 0,000 

 
[0,037] [3,534] [3,534] 

cohort_1978 0,137 1,235 0,000 

 
[0,038] [3,679] [3,679] 

cohort_1979 0,173 1,306 0,000 

 
[0,039] [3,824] [3,824] 

cohort_1980 0,229 1,398 0,000 

 
[0,040] [3,969] [3,969] 

cohort_1981 0,299 1,503 0,000 

 
[0,042] [4,115] [4,115] 

cohort_1982 0,307 1,547 0,000 

 
[0,044] [4,260] [4,260] 

cohort_1983 0,336 1,611 0,000 
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[0,046] [4,405] [4,405] 

cohort_1984 0,367 1,678 0,000 

 
[0,048] [4,550] [4,550] 

cohort_1985 0,353 1,699 0,000 

 
[0,050] [4,696] [4,696] 

cohort_1986 0,329 1,711 0,000 

 
[0,052] [4,841] [4,841] 

cohort_1987 0,320 1,737 0,000 

 
[0,053] [4,986] [4,986] 

cohort_1988 0,335 1,788 0,000 

 
[0,056] [5,131] [5,131] 

cohort_1989 0,274 1,763 0,000 

 
[0,057] [5,277] [5,277] 

cohort_1990 0,170 1,693 0,000 

 
[0,059] [5,422] [5,422] 

cohort_1991 0,129 1,688 0,000 

 
[0,061] [5,567] [5,567] 

cohort_1992 -0,001 1,594 0,000 

 
[0,063] [5,712] [5,712] 

cohort_1993 -0,030 1,600 0,000 

 
[0,066] [5,858] [5,858] 

cohort_1994 -0,229 1,437 0,000 

 
[0,070] [6,003] [6,003] 

cohort_1995 -0,477 1,224 0,000 

 
[0,077] [6,148] [6,148] 

cohort_1996 -0,711 1,026 0,000 

 
[0,091] [6,294] [6,294] 

cohort_1997 -0,687 1,086 0,000 

 
[0,143] [6,440] [6,440] 

    Constant 1,383 -3,274 - 

 
[0,009] [2,520] - 

Number of observations 532 532 532 
L -162,66 -162,66 -162,66 
AIC 0,95 0,95 0,95 
BIC -2773,04 -2773,04 -2773,04 
Deviance 1,24 1,24 1,24 
Source: Microdata from PNAD 1981-2008 
Obs.: Standard erros between brackets. 
*Coefficents adjusted for effect coding. Global mean of the REGLM 
coefficients: age = 4.7198; period = 0.55515; cohort = 0.47896 
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