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Abstract: Statistical discrimination starts from the notion of employers’ incomplete

information about the real productivity of applicants, even some time after hiring.

The paper focuses on the disputed question whether Phelp’s measurement model of

statistical discrimination can explain inequality in hiring, i.e. group discrimination.

The central argument is that employers perceive differences in the reliability of pro-

ductivity signals between groups. They may trust productivity signals less (e.g. test

scores), if these signals come from a specific group of applicants. The theoretical anal-

ysis finds the model not being capable to explain inequality in wages. However, when

considering allocation decisions (the hiring of workers) the mechanism may indeed

result in group discrimination, i.e. inequality. Contrary to intuition the direction of

discrimination depends on the relation of workers seeking a job to the number of open

positions. Using simulations, I show that the group whose signals are trusted less is

discriminated in very competitive labor markets, whereas, under the conditions of

less competition, the model even predicts discrimination against those workers whose

signals are trusted more. Considering the access to qualified positions, however, the

model always results in discrimination against the group whose signals are trusted

less, regardless of the level of competition. The paper concludes with some general

considerations on discrimination theory.
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1. Introduction: Statistical Discrimination

Statistical discrimination starts from the notion of employers’ incomplete information about the

real productivity of applicants, even some time after hiring (Aigner and Cain 1977; Arrow 1973;

Arrow 1998; Oaxaca 2001; Spence 1973). Since employers face an investment decision under un-

certainty, they base their decisions on the interpretation of easy accessible characteristics. Spence

(1973: 357) introduced two kinds of characteristics: indices, being traits that are observable and

not changeable such as gender or race; and signals referring to observable and changeable traits,

the most prominent being educational degrees. Inferences from indices and signals about ap-

plicants’ actual productivity are possible because of employers’ former experiences with other

employees. Hence they possess knowledge about the general distribution of productivity. For ex-

ample, employers may hold the “statistical belief” that applicants who possess university degrees

are more productive in a certain job than other applicants who only hold high school degrees.

There are three different models of statistical discrimination (Correll and Benard 2006; England

1992; Kalter 2003). The first elaborates on differences in statistical beliefs on group average

productivity; the second on differences in variances of (same) group productivity. I exclusively

focus on the third, the so called measurement model of statistical discrimination, as I agree

with previous reasoning that the first two can only explain group inequality if additional and

questionable assumptions are introduced (England 1992; Kalter 2003; Kalter 2006).

The core mechanism proposed in the measurement model of statistical discrimination is a

differential in employers’ perception of the reliability of a given productivity signal. The disputed

question is, whether or not inequality arises, when employers trust the same productivity signal

from one group less. To clarify, inequality is meant in the sense of group discrimination, i.e. when

of two groups who provide “essentially identical” labor services 1, one group on average earns

less or its members have a systematically lower chance of being hired. I am especially concerned

with ethnic inequalities, however, the following analysis should be generalizable to any form of

group inequality/discrimination. In the field of ethnic inequality, usually ethnic minorities’ labor

market disadvantages are attributed to a lack of productive resources on various dimensions

(e.g. Heath and Cheung 2007; Kalter 2006). In addition, there is a debate on whether ethnic

1That is no pre-market differences in average productivity or skills or availability.
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minorities are the target of discriminative hiring behavior by employers (Seibert and Solga 2005;

Kalter 2006). This paper tries to clarify whether statistical discrimination can explain group

inequality, with a special focus on the explanation of ethnic minorities disadvantages. For the

purpose of illustration, I assume a minority group B’s signals to be perceived as less reliable in

comparison to some majority group W’s signals.2

2. The Measurement Model of statistical discrimination

The measurement model of statistical discrimination was introduced by Phelps (1972), usually

the more accessible description by Aigner and Cain (1977) is cited. It assumes employers to base

wage or hiring decisions on visible signals (y), as long as they believe these signals are reliable

“test scores” of the true productivity q they are interested in. The underlying reasoning is that

signals, e.g. aptitude test scores or grade point averages, are a function of the true productivity

q and a normally distributed error term u as shown in formula 1:

y = q + u (1)

To the extent that employers believe a signal to be a less reliable test score, i.e. the error

term in the regression like relation implied in formula 1 is larger, they rather go back to their

statistical beliefs about average group productivity ®. Therefore, the central parameter in the

measurement model is the reliability ° of visible signals, which may be group specific (indexed by

g). It expresses the extent to which employers use signals or group averages to form an opinion

about expected productivity, as implied in formula 2.

E(q∣y) = (1− °g) ∗ ®g + °g ∗ y (2)

2There are good reasons to expect majority employers to trust signals of minority groups less. The general argu-
ment of statistical discrimination is that past experiences are the basis of statistical beliefs. The measurement
model assumes non-distorted perceptions of average productivity and of signals; an assumption questionable
in itself, considering everything we know about distortions in cognitive perceptions (see Hunkler 2008, espe-
cially chapter 2.3.2). However, this would suggest “error-discrimination” (England 1989) that should erode by
arbitrage in the long run. Nonetheless, it is likely that the reliability of minority members’ signals is perceived
lower, as employers by definition have less experience with minority candidates. As long as this minority
status remains, the hereon based lower reliability perception by employers may not erode by arbitrage, as
easily as erroneous beliefs about average productivity would.
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Formula 2 describes employers target variable, they are interested only in the expected value

of true productivity q given the observable test score y, i.e. E(q∣y). The formula is derived as

a reverse regression based on formula 2 assuming q and u are joint-normally distributed and

not correlated. To make inferences about E(q∣y) for a worker or applicant from a group, where

the signal for some reason is found to be less reliable, employers need to have some statistical

beliefs about the reliability of the signal denoted by °, and about the average productivity of

groups, denoted as ®. Rational employers should rely more on the test score or signal, when

the reliability of this signal is higher, as signals are a more individual information than group

averages can be.

The crucial and disputed question is whether this formulation of statistical discrimination

implied in formula 2 can actually explain group inequality. More precisely, will a minority

group for whom employers assume the same productivity signal as less reliable in fact be on

average disadvantaged? Cain (1986: 724) and others (e.g. England 1992; Kalter 2003) agree

that individual miss-allocations are unavoidable due to the error term u, however, that group

inequality does not follow from the model. I agree that this is true when applying the model to

wage determination as Cain did (1986: 723). However, applied to hiring processes, I come to a

different conclusion.

2.1. Statistical Discrimination in Wages

To follow Cain’s argument on wage determination (1986: 722f.) let us assume a minority and a

majority group of workers who on average have the same productivity and employers who have

valid statistical beliefs about this average productivity. Using the classical subscripts W for the

majority group and B for the minority one obtains ® = ®W = ®B. This assumption is crucial, as a

differential in real average productivity would imply pre-marked differences and hence not market

discrimination. Pre-market difference may exist, e.g. unequal chances in acquiring the necessary

qualifications in the schooling system, but if employers select on the basis of real differences in

productivity this cannot be regarded as discrimination. Assuming valid perceptions by employers

is central as well, as otherwise employers with erroneous beliefs should be driven out of markets

by arbitrage in the long run (England and Lewin 1989: 242f.). The only difference between
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majority and minority workers showing the same signal y then is a lower reliability for the latter

ones, i.e. °W > °B. If employers use expected productivity, as implied in formula 2, to determine

wages for Ws and Bs Cain derives formula 3:

wageW − wageB = (y − ®)(°W − °B) (3)

It is obvious from formula 3 that there is no group inequality or group discrimination in wage

determination. For a given signal y that is above the mean productivity ® majority members

will earn a wage premium, however, for a given signal below the mean productivity ® minority

members will earn a higher wage. On average these will cancel each other out. This can also

be seen in formula 2: If mean perceived productivity ® was the same, and signals y are non-

distorted measures of productivity, there is no effect on average if employers use the signal for

one (majority) group and their statistical beliefs for the other (minority) group.

2.2. Statistical Discrimination in Hiring

Let us now turn to hiring processes, when employers decide based on the expected productivity

as implied in formula 2 whom of the applicants to hire for an open position in their company. All

the straight-forward assumptions of the above wage determination analysis remain unchanged.

The only addition is that employers have a choice between different candidates, of whom one is

hired3. Matters are more complex in a hiring situation for two reasons: First, there is variety in

the quality of positions, which usually coincides with differences in productive skills to qualify

for these positions. Hence, there may be two levels of inequality: first, who gets a position

at all, and second, who gets a qualified position. Second, there can be varying excess demand

for positions, i.e. the relation between workers seeking a job versus job-openings may differ 4.

I start with a simplistic example to illustrate how these additional conditions affect whether

or not the measurement model of statistical discrimination causes inequality and what kind of

inequality. Based on this example, I distinguish two situations and derive hypotheses on the

3The analysis can easily be adapted to employers who hire more than one worker at a time.
4Throughout this paper I assume that there are always more candidates seeking a job than job-openings available.
If there are as many job-openings as candidates seeking a job or even more, this simple model implies that
everyone will be hired eventually and no inequality can be present by definition.
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resulting patterns of inequality.

2.2.1. A Simple Example

Assume a simple labor market consisting of four candidates, two of them belonging to a group

W and the others to a group B. In both groups there is a worker with a signal above the mean

(workers 1 and 3) and one below the mean (workers 2 and 4). Hence, there is again no pre-

market inequality implied, for both groups the mean signal ® is 50. Table 1 shows these four

workers, column 3 contains their original signals, column 4 displays the modified signals perceived

by statistically discriminating employers. Employers perceive signals from B candidates as less

reliable (° = 0.4) than signals for W candidates (° = 0.4).

Table 1: A simple four worker example

(1) (2) (3) (4) (5) (6)
Group Worker Signal Y Signal Y 1

SD ® °

W
1 60 58

50 0.8
2 40 42

B
3 60 54

50 0.4
4 40 46

1 Signal YSD is computed using formula 2; ° and ® are set
according to values given in in columns 5 and 6.

Without differences in necessary skill levels the level and direction of inequality solely depends

on the excess demand for labor. If employers want to fill exactly two positions, there is no

inequality. Worker 1 and 3, hence one W and one B worker will be hired. However, if the

relation of open positions to workers is smaller than 1:2 there is an advantage for the W worker

with the above mean signal. This is due to the remaining advantage of majority members with

signals above the mean ® (for W worker 1). He is evaluated rather on the basis of his signal

and hence will outdo the comparable minority applicant (worker 3) who is evaluated rather on

the basis of the mean productivity. In this case there will be discrimination against the group of

workers, whose signals are evaluated as less reliable. If the relation of open positions to workers is

larger than 1:2 this is no longer the case. Indeed, under this condition, workers 1, 3, and 4 will be

hired. That is two B workers and one W worker, hence there is discrimination against the group

of workers, whose signals are evaluated as more reliable.5 At first glance this is counterintuitive.

5In the trivial case of a perfect labor market, where the relation of open positions to candidates is 1:1 there
cannot be inequality, because every worker is hired.
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However, it is exactly the same compensating effect of the advantage of those minority workers

with signals below the average productivity we saw in the wage analysis. The crucial difference

in a hiring situation is that this compensating effect does not automatically emerge. Rather it

solely depends on the share of available workers hired.

In a next step we broaden the analysis to the existence of different job qualities and varying

skill levels associated with job quality. For example a good job could require a skill level of at

least a signal of 55. It is obvious that in the above 4-worker example only W-worker 1 will be

hired. Regardless of the relation of open positions to job-seekers, “Ws” now have an advantage

to occupy the good positions, as the “majority” advantage to be evaluated more according to

the actual signal plays out, whereas the “minority” advantage has no effect for these positions.

To generalize, if good positions require a skill level above the average skill (or signal) level of

® discriminatory hiring against the groups whose signals are trusted less results. The level

of inequality should rise the higher the required skill level for qualified positions is. For jobs

requiring a lower skill level, again the relation of remaining W and B workers is relevant; that is,

the above described relations of applicants to open positions will determine the level of inequality

considering who gets a job at all.

2.2.2. Hypotheses

In a singular hiring situation for a single open position, the boundary condition for the measure-

ment model of statistical discrimination to explain inequality in hiring against applicants whose

signals are trusted less, is the presence of at least one worker in the applicant pool with a signal

above the mean productivity whose signal is more trustworthy. Considering more than one open

position to fill and varying competition about these positions this simple deduction does not

hold anymore. Using the above example, I derive general hypotheses about the conditions under

which the measurement of statistical discrimination will cause what kind of inequality/group

discrimination:

Hypothesis 1: In case of no differences in necessary skill levels,

(a) if the relation of open positions to workers is smaller than 1:2 , we will observe

discrimination against the group whose signals are trusted less (“high competition”
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condition).

(b) if the relation of open positions to workers is equal to 1:2 we observe no discrim-

ination.

(c) if the relation of open positions to workers is larger than 1:2 (but smaller than 1:1

obviously) we will observe discrimination against the group whose signals are trusted

more (“low competition” condition).

Hypothesis 2: In case of differences in job quality and varying skill levels associated

with job quality, regardless of the relation of open positions to workers, the group

whose signals are trusted more will have an advantage to occupy good positions. This

advantage increases, the higher the threshold of skills required for a qualified job is.

2.3. Theoretical Conclusion

In sum, the measurement model of statistical discrimination can explain inequality in employment

or in quality of job position or job-status, depending on the structural conditions in the respective

labor market segment. Only in the very specific case of a relation of applicants to open positions

of 1:2, the measurement model does not predict inequality. The mechanism thereby does neither

rely on pre-market differences in average productivity, nor on a disadvantage in signaling power of

minority members. It solely explains inequality by the assumption of employers putting different

levels of trust in the signals of applicants from different groups. Contrary to expectations the

mechanism does not only predict discrimination against the group whose signals are trusted less.

Concerning the case of no differences in necessary skill levels and low competition, the mechanism

would even predict lower employment shares for the group whose signals are trusted more.

3. Simulating Statistical Discrimination

For lack of sufficient empirical data on actual hiring processes including employers decision pa-

rameters and workers exact characteristics, I use simulations to show that the above outlined

measurement model of statistical discrimination can explain group discrimination in hiring. This
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method allows to control employers and workers parameters carefully and thereby to reject al-

ternative explanations. Hence, I can attribute found group discrimination, i.e. inequality, clearly

to the measurement model’s mechanism.

3.1. The Simulation Model

The statistical package Stata is used to simulate sets of workers (Li...n) and employers (Ej...m).

Using a standard data matrix, the first columns of the matrix represent the workers’ traits. Each

employers’ decision parameters are written into the first rows of a new column for each employer

(these are group-specific ® and ° terms). This creates a matrix as shown in table 2 for each single

run of the simulation. The cells, where workers in lines intersect with employers in columns, are

used to calculate different hiring functions, as described below. An “x” represents an application;

e.g. workers L1 and Li apply to employer E1. Hence, employer E1 in the example can only choose

to hire one of the two.

Table 2: Example Matrix of Data Setup

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
E1 E2 ... Ej ... Em

®W 50 50 ... 50 ... 50
®B 50 50 ... 50 ... 50
°W 0.8 0.8 ... 0.8 ... 0.8
°B 0.6 0.6 ... 0.6 ... 0.6

Signal Group
L1 50 W x x
L2 45 B x
... ... ...
Li 55 B x
... ... ... x
Ln 50 W x

3.1.1. Actors: Workers & Employers

Each worker is assigned a productivity signal y drawn from a standard normal (Gaussian) dis-

tribution with a mean of 50 and a standard deviation of 10. Then a random variate function,

that allows for different shares of W and B workers, divides the n workers into two groups, called

W and B. Assigning the signal first and then allotting each worker to one of the groups should
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result in almost equally distributed parameters for the two groups.

For each employer an additional column is added to the matrix (column 4 in table 2 is merely

used for descriptive purposes, column 5 holds the first employer). The first five rows of the matrix

are reserved to store the employers’ identification numbers (E1...En) and their individual decision

parameters. As two groups of workers are used, employers may have two different perceptions of

mean productivity ® (®W and ®B). However, to make sure that there is no difference between

®W and ®B, both parameters are set equal to the average productivity of all workers (for each

employer). For the central parameter ° as well, employers can have different perceptions of how

reliable the same productivity signal is from each group. In the example matrix in table 2 each

employer has the same perception of mean productivity for both groups, but signals from the W

group of workers are perceived as more reliable (0.8) than signals from the B group (0.6).

3.1.2. The Application Process

The application process is designed to resemble the structural features of real world labor markets.

The workers only apply to a specified number of employers (in the example matrix in table 2

worker L1 applies to employers E1 and Ej). Again a random variate function is used to draw a set

of employer numbers for each worker.6 Employers can only choose from workers who “selected”

to apply to them. In the example matrix employer E1 can only choose to hire either worker

L1 or worker Li. To keep it simple, each employer has only one open position to fill. In order

to compare statistical discrimination to a “fair” hiring routine this step is performed with two

selection functions. In the highest signal hiring function employers simply choose based on the

raw signals and select the applicant with the highest signal; for the statistical discrimination

hiring function the signals are modified first, using the employers’ decision parameters according

to formula 2. When an employer hires a worker all other applications of this worker to other

employers are deleted, as he is not available on the market anymore. This reduces the set of

applicants to the next employers who hire. The order of employer decisions is simply determined

by their identification numbers. However, as employers are randomly set up and applications are

randomly assigned, the ordering has no impact on the central mechanisms.

6This may result in a worker getting assigned two or more times to the same employer. In that case only one
application of this worker to the employer is considered.
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3.1.3. Results and Robustness Issues

The central outcome of each simulation run is computed as share of W and B workers employed

under each of the two selection functions. The finite amount of workers and employers results

in small differences regarding the distribution of parameters, e.g. workers signals. Even if the

groups are distributed equally (50% Ws and 50% Bs) and randomly chosen from one distribution

of signals, standard deviations for one group can get larger and/or the mean signal might be

slightly different. To control for this, each combination of parameters (each run of the simulation)

is repeated 20 times. To better distinguish outcomes of single simulation runs in figures or plots

a small random term on the x- and y-dimension is added.

3.1.4. A Basic Check of the Simulation Model

To show the simulation model works and that simulated inequalities can be attributed to the

measurement model of statistical discrimination, in this first step, I use a simple parameter

set-up. Then I compare the two selection functions, the highest signal hiring function and the

statistical discrimination hiring function. Panel A in table 3 gives an overview of the parameter

settings. 500 workers compete for 100 employers, i.e. 100 open positions to fill. The two groups

are equally large, 50% of the workers are assigned to group B and 50% to group W; each worker in

both groups applies for 10 positions. For W-workers the employers assume a high reliability of the

signal, °W is set to 0.8 throughout all runs. The only parameter that varies is °B; it is set in 0.05

steps within the interval [0.2; 0.8], creating 13 different °B values. Multiplied by 20 repetitions for

each parameter setting, the simulation is repeated 260 times. If the above theoretical analysis is

correct, hypothesis 1a should hold as the relation of open positions to workers is smaller than 1:2.

Under this condition a smaller ° for one group should result in group discrimination against this

group. That is their chances of getting a job are lower. Therefore, I expect increasing inequality

the smaller °B gets in relation to °W , in direction of discrimination against B-workers.

Panel B of table 3 shows the simulated signals 7. Across all 260 single runs, on average the W-

workers mean signals and the standard deviation of their signals is somewhat higher. However,

7Basis for Panel B in table 3 are the means and standard deviations of the assigned signals of each worker ex-
tracted from each single simulation run. Therefore, table 3 e.g. reports standard deviations of the distribution
of these original standard deviations.
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Table 3: Summary statistics

Mean Std. Dev. Min. Max.

A: Parameter Settings
E - Number of Employers 100.0 0 100.0 100.0
°W 0.8 0.000 0.8 0.8
°B 0.5 0.187 0.2 0.8
L - Number of Workers 500.0 0 500.0 500.0
Share of B Workers 50.0 0 50.0 50.0
Number of Applications Ws 10.0 0 10.0 10.0
Number of Applications Bs 10.0 0 10.0 10.0

B: Simulated Values
All Workers: Mean Signal 49.991 0.430 48.704 51.478
W Workers: Mean Signal 50.014 0.641 48.445 51.994
B Workers: Mean Signal 49.967 0.641 48.212 51.774
All Workers: Std. Dev. Signal 9.986 0.318 8.963 10.771
W Workers: Std. Dev. Signal 9.984 0.441 8.923 11.026
B Workers: Std. Dev. Signal 9.976 0.421 8.504 11.201

Number of Runs 260

these very small differences (0.04, respectively 0.01) on a signal range from about 3 to 94 are

negligible. Regressing the share of employed B-workers under the statistical discrimination hiring

function on the delta in ° (°W -°B) results in a ¯-coefficient of −.23. Adding controls for mean and

standard deviation of the Bs and Ws signals does significantly improve the model-fit. However,

the largest effect is only ¯ = −.02 for the mean B-workers’ signals. The effect of the delta in

°W − °B completely remains (see Appendix A)8.

Figure 1 shows the aggregated output of the 260 simulation runs. Panel A sums up all runs

when the highest signal hiring function is used. The x-axis is merely used to spread out the

runs to make them more distinguishable, but as ° is not used in this hiring function it has no

substantive meaning. It becomes obvious from panel A that the random assignment of signals

for the two groups was successful. Each groups’ employment rate is 20%, which resembles the

relation of all open positions (100) to the total number of workers (500) in these simulation runs.

There is some “noise” in that only on average (cf. the median bands) the employment share is

0.2, but in single runs and for single groups the share of employed can be as low as 14% or as

8The opposite regression on the share of employed W-workers comes to the same conclusion, see Appendix A
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high as 26%. This goes back to the finite number of workers and the therefore existing small

differences in the distribution of signals, and/or the additional random procedures implied in

application of workers to employers. However, the “noise” is reasonably small9 and the use of 20

repetitions is sufficient to have no considerable disturbances in the median bands.

Figure 1: Simulation Runs of Basic Model

A: Highest Signal B: Statistical Discrimination
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Ws employed Bs employed Ws median band Bs median band

In Panel B of figure 1 the very same signals are the basis for employers’ decisions, only now

they are modified according to the measurement model’s assumption (cf. formula 2). To safely

attribute possible effects to the °-mechanism, instead of using group specific ®-terms, ® was fixed

for both groups to all workers mean productivity within each run. For W-applicants °W is set

to 0.8 in all runs, whereas °B varies from 0.8 to 0.2. The runs are plotted against the different

° values on the x-axis. In the left segment of Panel B, where both groups are assigned the same

°, we should not see any difference. The larger the difference between the perceived reliability of

signals gets, i.e. the more B-workers are evaluated according to the mean productivity instead

of individual signals, the more W-workers should benefit from their advantage when they have

individual signals above the mean. That is exactly what we see in Panel B: with a rising delta

9The difference in °W − °B explains 83% of the variance in employment of B-Workers, and as well 83% in the
employment of W-Workers under the statistical discrimination hiring function. So the randomness implied in
the simulation procedure and the non-perfect assignment of productivity signals accounts only for less than
20% of the variance observed (cf. appendix A).
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between group specific °-terms, the share of employed W-workers rises to more than 30%, and

the share of B-workers drops below 10%.

3.2. Results: Simulation of Access to Positions

Hypothesis 1 predicted the measurement model of statistical discrimination to result in inequality

depending on the relation of open positions to workers. In a “high competition” condition, i.e.

the relation of open positions to applicants is smaller than 1:2, I expect discrimination against

the group whose signals are trusted less (Bs in the following). In a labor market, where the

relation of open positions to workers is equal to 1:2, we will observe no discrimination. Finally

in a “low competition” condition, i.e. the relation of open positions to workers is larger than 1:2,

discrimination against the group whose signals are trusted more (Ws) is expected . To test this

hypothesis I broaden the above used parameter set-up. Instead of using a fixed number of open

positions, the amount of available jobs ranges between 50 and 450; the number of workers remains

constant (500). To check if the effects are robust concerning the relative size of a minority group

whose signals are perceived as less reliable, I additionally vary the relative size of group B. In

one set of runs 10% of all workers are Bs, in a second set 30%.

[figure 2 about here]

Figure 2 summarizes the different parameter settings. The first row of figures shows a high

competition condition (Hypothesis 1a), the middle row shows a relation of 1:2 (Hypothesis 1b),

and the bottom row shows a low competition condition (Hypothesis 1c). In the left panel the

share of Bs is 10%, in the right panel 30%. The derived hypotheses all hold. In a high competition

condition (first row), there is clear discrimination against the group whose signals are perceived

less reliable (against Bs). The lower the reliability parameter °B gets, while °W stays stable at

0.8, the lower are the simulated employment rates for Bs. At the same time, the employment

rates of Ws slightly increase. The increase is small and somewhat difficult to see, due to the W

group being very large in comparison to the B group, whose members “lose their jobs” to W

workers. This basic finding is robust across different minority sizes, however, it seems that small

minorities suffer more under this condition. In the left panel where the minority consists of only
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10% of the workers, their medium employment rate is always below the employment rate in the

right panel, where the relative minority size is larger (30%). Clearly, for the relation of 1:2 of

open positions to workers there is no discrimination visible, regardless of the minority’s relative

size. Thus, hypothesis 1b perfectly holds. Hypothesis 1c predicted a reversal of the direction

of discrimination under the condition of low competition. In the bottom row of figure 2 exactly

this can be observed. When the relation of applicants to open positions is larger than 1:2, the

group whose signals are trusted more, the Ws, fare worse. Even if the Ws with signals above

the average productivity are hired for the first 25% of open positions, the group whose signals

are trusted less has an advantage concerning the filling of the following 50% of jobs. Therefore,

under the condition of low competition, the prediction of the model reverses, i.e. we observe

discrimination against Ws, the group whose signals are trusted more.

3.3. Results: Simulation of Access to Qualified Positions

For access to qualified positions, hypothesis 2 stated that the measurement model results in

discrimination against the group whose signals are trusted less, the higher the threshold of skill

required for a qualified position is.10 To test for this hypothesis the above used application

procedure was slightly changed. Employers only hire an applicant for a qualified position if the

perceived productivity of the respective worker is above a certain threshold.

[figure 3 about here]

Figure 3 shows the simulations for access to qualified positions. For the left panel the threshold

of minimum required skills is set to 53; in the right panel it is set to 5611. The first row presents a

relation of open positions to workers of 50 : 500; the middle row of 250 : 500 and the bottom row

of 450 : 500. Throughout the simulated parameter space, the group whose signals are trusted

more shows a significantly higher share of being employed in qualified positions (all t > 2.81, all

p < 0.01; df = 199). Only for the simulation runs when °W = °B = 0.8 the employment share is

10I restrict the analyses to the usual case of qualified positions requiring skill levels above average productivity.
11Using higher thresholds results in similar effects, however, the share of Bs employed drops to zero for larger

°B values. Zero shares create some kind of bottom ceiling, which makes interpretation unnecessary difficult.
Therefore, I use comparatively low thresholds to show the basic mechanism.
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on average almost equal (the difference across all runs is -0.003, pointing to a small advantage for

Ws; t = 1.07,p > 0.2, df = 199). Therefore, hypothesis 2 cannot be rejected; under all conditions

simulated the group whose signals are trusted less is discriminated concerning the access to

qualified positions. Figure 3 additionally shows some interesting patterns. In the first row of

simulations Ws seem to “take over” Bs qualified positions, the less reliable employers perceive

B’s signals (the grey Ws median band line increases here, whereas in the other 4 simulations

it remains on a stable level). This is due to the small number of only 50 qualified positions in

relation to 500 applicants. There are simply enough Ws who show a signal above the thresholds

(53 respectively 56), when only 50 positions are to be filled. If a higher share of qualified

positions is open (middle and bottom row of simulations) already all Ws whose signal is above

the respective thresholds are employed, hence they cannot “win over” the positions B’s used to

occupy. This is especially obvious when comparing the middle to the bottom row of simulations

in figure 3: the number of open positions increases by 200, however the share of Ws employed

remains at about 35% for a threshold of 53, respectively 23% for a threshold of 56 (the absolute

number of Ws does not change).

The second part of hypothesis 2 predicts more discrimination against Bs the higher the thresh-

old of skills required for a qualified job is. From the comparison of the left panel of figure 3,

where the threshold is 53 and the right panel, where the threshold is 56, this prediction is not

easy to see. The reason is that with a higher threshold the overall employment level is lower

and the figures cannot be directly compared. In addition in some simulations the share of Bs

employed in qualified positions even hits 0% at some point. Odds ratios are suitable to show the

effect of a higher threshold independent of the absolute shares of hired workers. Suppose SW and

SB are the shares of Ws respectively Bs who got a qualified position (the plotted values in figure

3), then the odds ratio in favor of Ws is defined as (SW/(1−SW ))/(SB/(1−SB)). An odds ratio

> 1 indicates an advantage for Ws; an odds ratio < 1 indicates an advantage for Bs. Using odds

ratios allows an interpretation of the relative increases in the disadvantages, regardless of the dif-

fering absolute levels of the share of employment. However, the odds ratio is only defined as long

as no share drops to zero. For the simulation runs in figure 3 for all °B > 0.45 the shares do not

drop to zero. Therefore, table 4 shows the average odds ratios for these parameter combinations

only. With few exceptions (these being all in the simulations with the extreme combination of 50
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positions to 500 workers), the advantage for Ws is larger for the higher threshold of 56. Hence,

the second part of hypothesis 2 also holds: the higher the threshold the more will a group, whose

signals are trusted less, suffer from statistical discrimination.

Table 4: Simulation of Access to Qualified Positions

Number of Employers and Threshold
—50— —150— —250— —350— —450—

°W °B 53 56 53 56 53 56 53 56 53 56
.8 .5 5.17 < 6.58 1.51 < 2.41 1.44 < 2.56 1.82 < 2.20 1.60 < 2.31
.8 .55 4.64 > 3.09 1.48 < 2.08 1.22 < 2.00 1.43 < 2.15 1.29 < 1.89
.8 .6 2.60 < 3.05 1.43 < 1.75 1.32 < 1.56 1.18 < 1.93 1.34 < 1.63
.8 .65 2.05 > 1.66 1.25 < 1.67 1.26 < 1.47 1.25 < 1.39 1.23 < 1.51
.8 .7 1.39 < 1.78 1.30 > 1.23 1.03 < 1.31 1.14 < 1.30 1.09 < 1.27
.8 .75 1.37 = 1.37 1.06 < 1.18 1.02 < 1.11 1.03 < 1.07 1.06 < 1.23
.8 .8 1.20 > 1.16 1.12 > 1.10 0.97 < 1.06 1.03 < 1.09 0.95 < 1.21

3.4. Results: “Perfect” Labor Market Conditions and “Reduced Mobility”

This section presents additional simulations to answer two additional questions: First, what

happens under perfect labor market conditions, i.e. when each applicant applies to each open

position. Second, does the mechanism of statistical discrimination intensify the penalty of a

group when this group is less mobile on the market, or has limited information about open

positions. Both reduced mobility and limited information on attractive labor market positions

translate into fewer applications of this group to employers in the simulation model (the opposite

of “perfect” labor markets).

In the following runs, therefore, the number of applications for both groups varies between the

above used 10 applications and the number of open positions, which was set to 160 in all runs.

More exactly the simulation was set to generate 10, 60, 110, or 160 random employer numbers

(see section 3.1 for details). However, as described in section 3.1.2, it may happen that a worker

“randomly selects” the same employer number more than once. Therefore, the actual unique

applications are below the intended numbers. Empirically on average 9.7 (instead of 10), 50.2

(instead of 60), 79.7 (instead of 110) and 101.3 (instead of 160) unique applications have been

simulated. The deviation from the intended number of applications increases, as the likelihood

of getting identical employer numbers raises the more often one draws from the same universe of
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employers. The simulations is applied on a share of 20% Bs of in total 500 workers, a stable °W

of 0.8 and again °B varies between 0.2 and 0.8.

[figure 4 about here]

Figure 4 presents average odds ratios (see above) for the simulated parameter space. The basic

outcome is the same, regardless of the additional variation in average number of applications per

worker. The group whose signals are trusted less, is discriminated more the higher the perceived

reliability differential is. In figure 4 all odds ratios rise way above 1 the larger the reliability

differential between Ws and Bs gets (1 would indicate equality, values > 1 indicate an advantage

for Ws). The solid black line indicating a perfect labor market, in which both groups apply to all

open positions, is not systematically different from the bluish-gray dash-dot line that indicates all

workers to apply to ten positions only (in all other simulations presented so far, 10 applications

per worker were used). Essentially all lines indicating equal numbers of applications by Ws and

Bs result in the same pattern and are even somewhat difficult to distinguish. More interesting

are the lines from runs where the number of applications is different between Ws and Bs. The

highest levels of inequality result when the minority group B applies only for 10 positions and

the Ws apply for more positions (see the bluish-gray solid, dash and dot lines). On the opposite,

the lowest levels are predicted when Ws only apply for 10 positions and Bs apply for more (see

the lowest three dash-dot lines). In sum, we observe the statistical discrimination mechanism

to be robust against different levels of applications. Even under the unrealistic assumption that

there is a “perfect” labor market, i.e. every worker applies for every open position, statistical

discrimination remains. Second, the effect is amplified when one group applies to fewer open

positions than the other. The employment rates of a minority group, whose signals are less

trusted, will be even lower when this group is less mobile, and hence applies to fewer employers.

3.5. Robustness Check: More Variance in Parameters

This section will try to answer the question whether the basic findings hold, when more variance

at one time is allowed on all parameters (e.g. variation in °, varying number of applications, ...)?

I also wonder if it makes a difference when instead of continuous a discrete signal is used. E.g.
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school/university leaving certificates or vocational degrees rather generates a very limited set of

discrete gradations...

[noch nicht fertig]

4. Conclusion

The paper focussed on whether or not Phelp’s measurement model of statistical discrimination

can explain inequality in hiring, i.e. group discrimination against workers whose productivity

signals are perceived on average as less reliable. I used the example of ethnic inequality, where it

is usually assumed that an ethnic minority’s signals are trusted less, whereas employers perceive

the majority’s signals as more reliable. The theoretical analysis finds that in a singular hiring

situation one “majority” applicant with a signal above the mean of productivity signals would be

sufficient to create an advantage for the majority group. If we consider a whole labor market the

analysis shows that the direction of discrimination depends on the relation of workers seeking a job

to the number of open positions. A minority group whose signals are trusted less is discriminated

in very competitive labor markets, whereas, under the conditions of less competition the model

even predicts discrimination against those workers whose signals are trusted more. Only under

the very specific condition of the relation of open positions to applicants being 1:2 the Phelp’s

model does not result in inequality. Considering the access to qualified positions the model

always results in discrimination against the group whose signals are trusted less, regardless of

the level of competition. This is true for all qualified positions that require a skill level above

the average productivity in the market (a very realistic assumption). Simulations, in lack of

sufficient empirical data, show that all theoretically derived effects occur, and that they are

solely based on group differences in perceived reliability. Further analyses show that reduced

mobility, translated into fewer applications to employers in the simulations, will pronounce these

effects substantially. To sum up, Phelp’s measurement model of statistical discrimination results

in group discrimination in almost all structural conditions. However, very against intuition,

the predicted discrimination effects do not always reduce the minority group’s labor market

attainment (whose signals are perceived less trustworthy). Only when there is high competition

about positions, or when we consider inequality in job quality, Phelp’s model can account for
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ethnic disadvantages.

To conclude inequality research should take statistical discrimination into account more seri-

ously. Even if the original Phelp’s models comes under certain conditions to somewhat unrealistic

predictions, it has a couple of advantages to offer. The unrealistic predictions to some extent

can be attributed to very idealistic assumptions concerning employers: The original model, while

convincingly taking into account the bounded rationality of employers in regard to the reliability

of signals, is still very demanding in respect to the knowledge employers are assumed to have

concerning average productivity. It requires employers to possess up-to-date undisturbed beliefs

about the average productivity of groups of workers. Aside from this “flaw” the basic mechanism

is precise yet simple and to some extent it takes into account the bounded rationality of em-

ployers very realistically. Furthermore, it offers “interfaces” to include competing discrimination

models. For example, Becker’s tastes (Becker 1971: 40) or status based discrimination theory

that focusses on cognitive stereotypes about productivity, based on ascriptive categories (e.g.

Correll und Benard 2006) or e.g. “error discrimination” (England und Lewin 1989: 242) could

be modeled into group-specific ®-parameters. Differences in group-specific ° values originally

result from the minority status and the following fewer experiences of employers with minority

group applicants. However, in principal it would also allow to model “social resources” as net-

work effects or personal recommendations ([1]; Lin 1999). E.g. personal recommendations should

raise the trust into individual signals. In sum, to come to an inclusive and realistic theoretical

model of employer behavior that can explain discriminative hiring, the measurement model of

statistical discrimination offers the most promising starting-point.
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Figure 2: Simulation of Access to Positions
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Figure 3: Simulation of Access to Qualified Positions
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Figure 4: “Perfect” Labor Market Conditions and “Reduced Mobility”
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A. A Basic Check of the Simulation Model (Appendix)

OLS-Regression of Share of B-Workers employed
(1) (2)

VARIABLES Model 1 Model 2

°W - °B -0.233*** -0.230***
(0.007) (0.004)

W Workers: Mean Signal -0.014***
(0.001)

B Workers: Mean Signal 0.016***
(0.001)

W Workers: Std. Dev. Signal -0.011***
(0.002)

B Workers: Std. Dev. Signal 0.009***
(0.002)

Constant 0.209*** 0.115
(0.002) (0.094)

Observations 260 260
R2 0.826 0.932

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

OLS-Regression of Share of W-Workers employed
(1) (2)

VARIABLES Model 1 Model 2

°W - °B 0.238*** 0.235***
(0.007) (0.004)

W Workers: Mean Signal 0.014***
(0.001)

B Workers: Mean Signal -0.016***
(0.001)

W Workers: Std. Dev. Signal 0.012***
(0.002)

B Workers: Std. Dev. Signal -0.008***
(0.002)

Constant 0.190*** 0.243**
(0.002) (0.096)

Observations 260 260
R2 0.833 0.931

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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B. Simulation Code (Stata)

1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/∗

3 S i m u l a t e S t a t i s t i c a l D i s c r i m i n a t i o n

5 Chr i s t i an Hunkler
Mannheim Univers i ty , August 2009

7
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

9
∗>> CREATE WORKERS ( workers in rows ; f i r s t 5 rows re s e rved f o r employer param . )

11 c l e a r
g l oba l obs = $ l + 6

13 s e t obs $obs
gen id = n // f o r s o r t i n g o f da ta s e t s

15
∗>> Generate workers S i gna l s ( s ) and a l l o t to two groups (b)

17 i f $sames==1 {
qui gen s = rnormal ($sm , $sd ) i f id>6

19 }

21 gen b = in t ( runi form ()∗100) i f id>6
r ep l a c e b = 1 i f b <=$b & id>6

23 r ep l a c e b = 0 i f b > $b & id>6

25 ∗>> CREATE EMPLOYERS ( in columns )
l o c a l n = 1

27 whi le ‘n ’ <= $e {
qu i e t l y generate e ‘ n ’ = . i f id>6

29 qu i e t l y l o c a l n = ‘n ’ + 1
}

31
∗>> wr i te employers ’ gammas in l i n e s 1 and 2

33 gen s t r50 desc=””
r ep l a c e desc=”Gamma W” i f id==1

35 r ep l a c e desc=”Gamma B” i f id==2
rep l a c e desc=”Alpha W” i f id==3

37 r ep l a c e desc=”Alpha B” i f id==4
order desc

39
gen tempgw = rnormal ($gw , $gwsd ) // temporary help va r i ab l e f o r gamma

41 gen tempgb = rnormal ( $gb , $gbsd )

43 sum s i f id>6
l o c a l alphab=r (mean)

45 l o c a l alphaw=r (mean)

47 l o c a l n = 1
whi le ‘n ’ <= $e { // go through a l l employers

49 l o c a l gw = tempgw in ‘n ’
l o c a l gb = tempgb in ‘n ’

51 qu i e t l y r ep l a c e e ‘ n’= ‘gw’/100 i f id==1 // t h i s i s gamma w
qu i e t l y r ep l a c e e ‘ n’= ‘ gb ’/100 i f id==2 // t h i s i s gamma b

53 qu i e t l y r ep l a c e e ‘ n’= ‘ alphaw ’ i f id==3 // t h i s i s alpha w
qu i e t l y r ep l a c e e ‘ n’= ‘ alphab ’ i f id==4 // t h i s i s alpha b

55 qu i e t l y l o c a l n = ‘n ’ + 1
}

57 capture drop temp∗

59 ∗>> APPLICATION
l o c a l n = 1 // wr i t e v a r i a b l e s with randomly s e l e c t e d employer number

61 whi le ‘n ’ <= $aw {
gen apply w ‘ n ’ = in t ( runi form ()∗ $e ) + 1 i f id>6

63 l o c a l n = ‘n ’ + 1
}

65
l o c a l n = 1

67 whi le ‘n ’ <= $ab {
gen apply b ‘ n ’ = in t ( runi form ()∗ $e ) + 1 i f id>6

69 l o c a l n = ‘n ’ + 1
}

71
f o r v a l u e s i =1(1) $e { // copy s i g n a l s o f app l i c a t i o n s in to employer columns

73 f o r v a l u e s j =1(1)$aw {
qu i e t l y r ep l a c e e ‘ i ’ = s i f b==0 & apply w ‘ j ’==‘ i ’

75 }
}

77
f o r v a l u e s i =1(1) $e {

79 f o r v a l u e s j =1(1)$ab {
qu i e t l y r ep l a c e e ‘ i ’ = s i f b==1 & apply b ‘ j ’==‘ i ’

81 }
}

83
∗>> Output Var iab le : number o f app l i c a t i o n s by Ws and Bs f o r each employer

85 f o r v a l u e s i =1(1) $e { // s i n g l e constant var f o r each e
qu i e t l y gen temp ‘ i ’= 1 i f e ‘ i ’ != . & b==0

87 qu i e t l y egen appl w ‘ i ’ = t o t a l ( temp ‘ i ’ )
qu i e t l y drop temp ‘ i ’

89 }

91 gen appl w = . // wr i t e in to one va r i ab l e
f o r v a l u e s i =1(1) $e {

93 qu i e t l y r ep l a c e appl w = appl w ‘ i ’ in ‘ i ’
q u i e t l y drop appl w ‘ i ’

95 }
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97 f o r v a l u e s i =1(1) $e { // s i n g l e constant var f o r each e
qu i e t l y gen temp ‘ i ’= 1 i f e ‘ i ’ != . & b==1

99 qu i e t l y egen appl b ‘ i ’ = t o t a l ( temp ‘ i ’ )
qu i e t l y drop temp ‘ i ’

101 }

103 gen appl b = . // wr i t e in to one va r i ab l e
f o r v a l u e s i =1(1) $e {

105 qu i e t l y r ep l a c e appl b = appl b ‘ i ’ in ‘ i ’
q u i e t l y drop appl b ‘ i ’

107 }

109
∗>> HIRING ACCORDING TO STATISTICAL DISCRIMINATION

111 capture drop employed // help va r i ab l e
gen employed = 0 i f id>6

113
f o r v a l u e s i =1(1) $e {

115 qu i e t l y sum e ‘ i ’ in 1 // s t o r e employers parameters as l o c a l s
l o c a l gw = r (mean)

117 qu i e t l y sum e ‘ i ’ in 2
l o c a l gb = r (mean)

119 qu i e t l y sum e ‘ i ’ in 3
l o c a l aw = r (mean)

121 qu i e t l y sum e ‘ i ’ in 4
l o c a l ab = r (mean)

123
qu i e t l y gen esd ‘ i ’= e ‘ i ’ // generate copy o f s i g n a l o f app l i c an t s

125
qu i e t l y r ep l a c e esd ‘ i ’ = ((1− ‘gw ’ )∗ ‘ aw ’ ) + ( ‘gw ’ ∗ esd ‘ i ’ ) i f b==0

127 qu i e t l y r ep l a c e esd ‘ i ’ = ((1− ‘gb ’ )∗ ‘ ab ’ ) + ( ‘ gb ’ ∗ esd ‘ i ’ ) i f b==1

129 qu i e t l y sum esd ‘ i ’ i f employed==0 & id>6 // search best appl .

131 i f $ q u a l i f i e d==0 { // Simulat ion o f a c c e s s to p o s i t i o n s . no th r e sho ld s
qu i e t l y r ep l a c e esd ‘ i ’ = 0 i f esd ‘ i ’ != r (max) & esd ‘ i ’ != . & id>6

133 qu i e t l y r ep l a c e employed = 1 i f esd ‘ i ’==r (max) & esd ‘ i ’ != . & id>6
}

135 i f $ q u a l i f i e d==1 { // Simulat ion o f a c c e s s to q u a l i f i e d pos . : t h r e sho ld s
qui r ep l a c e esd ‘ i ’ =0 i f esd ‘ i ’ != r (max) &esd ‘ i ’ != . &id>6 ∣ esd ‘ i ’< $th

137 qui r ep l a c e employed=1 i f esd ‘ i ’==r (max) &esd ‘ i ’ != . &id>6 &esd ‘ i ’>=$th
}

139
move esd ‘ i ’ e ‘ i ’

141
i f $check1==1 { // Extra Output to t ra c e queuing o f workers

143 pre s e rve
keep i f id>6

145 keep b s employed /∗ esd ‘ i ’ ∗/
saveo ld ” $ssdout /$name/${name} check1 $ {run} ‘ i ’ . dta”

147 r e s t o r e
}

149 }

151 i f $check1==1 { // Extra Output to t ra c e queuing o f workers
pre s e rve

153 n o i s i l y use ” $ssdout /${name} check1 $ {run} 1 . dta ” , c l e a r
gen e=1

155 e ra s e ” $ssdout /$name/${name} check1 $ {run} 1 . dta”
f o r v a l u e s i =2(1) $e {

157 append us ing ” $ssdout /$name/${name} check1 $ {run} ‘ i ’ . dta”
r ep l a c e e=‘ i ’ i f e==.

159 e ra s e ” $ssdout /$name/${name} check1 $ {run} ‘ i ’ . dta”
}

161 compress
saveo ld ” $ssdout /$name/${name} check1 $ {run } . dta ” , r ep l a c e

163 r e s t o r e

165 }

167 capture drop employed

169 ∗>> HIRING ACCORDING TO HIGHEST SIGNAL
capture drop employed

171 gen employed = 0 i f id>6

173 f o r v a l u e s i =1(1) $e {
qu i e t l y sum e ‘ i ’ i f employed==0 & id>6

175 i f $ q u a l i f i e d==0 { // Simulat ion o f a c c e s s to p o s i t i o n s . no th r e sho ld s
qu i e t l y r ep l a c e e ‘ i ’ = 0 i f e ‘ i ’ != r (max) & e ‘ i ’ != . & id>6

177 qu i e t l y r ep l a c e employed = 1 i f e ‘ i ’==r (max) & e ‘ i ’ != . & id>6
}

179 i f $ q u a l i f i e d==1 { // Simulat ion o f a c c e s s to q u a l i f i e d pos . : t h r e sho ld s
qui r ep l a c e e ‘ i ’ = 0 i f e ‘ i ’ != r (max) &e ‘ i ’ != . &id>6 ∣ e ‘ i ’< $th

181 qui r ep l a c e employed = 1 i f e ‘ i ’==r (max) &e ‘ i ’ != . &id>6 &e ‘ i ’>=$th
}

183 }
capture drop employed

185
∗>> CONSTRUCT OUTCOME VARIABLES (EMPLOYED) :

187 gen empls = 0
gen emplsd = 0

189
f o r v a l u e s i =1(1) $e {

191 qu i e t l y r ep l a c e empls = empls + 1 i f e ‘ i ’ >0 & e ‘ i ’ <. & id>6
qu i e t l y r ep l a c e emplsd = emplsd + 1 i f esd ‘ i ’>0 & esd ‘ i ’< . & id>6

193 }

195
∗>> WRITE FINAL OUTPUT DATASETS
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197 compress
saveo ld ” $ssdout /$name/${name} $run . dta” // SAVE MIKRO−FILES

199
gen s t a r t = . // SAVE MAKRO−FILES ( Star t )

201 order s t a r t
gen stop = .

203
gen run = $run

205 gen seed = c ( seed )
gen l = $ l

207 gen e = $e
gen bs = $b

209
gen gw = $gw

211 gen gwsd = $gwsd
gen gb = $gb

213 gen gbsd = $gbsd
gen aw = $aw

215 gen ab = $ab
i f $ q u a l i f i e d==1 { // Simulat ion o f a c c e s s to p o s i t i o n s : with th r e sho ld s

217 gen th = $th
}

219
fo r each var o f v a r l i s t s b empls emplsd appl w appl b {

221 qu i e t l y sum ‘ var ’ i f id>6
gen ‘ var ’ sd = r ( sd )

223 gen ‘ var ’ mean = r (mean)
gen ‘ var ’ min = r (min )

225 gen ‘ var ’ max = r (max)
}

227 fo reach var o f v a r l i s t s b empls emplsd {
qu i e t l y sum ‘ var ’ i f b==0 & id>6

229 gen ‘ var ’ w sd = r ( sd )
gen ‘ var ’ w mean = r (mean)

231 gen ‘ var ’ w min = r (min )
gen ‘ var ’ w max = r (max)

233 }
f o r each var o f v a r l i s t s b empls emplsd {

235 qu i e t l y sum ‘ var ’ i f b==1 & id>6
gen ‘ var ’ b sd = r ( sd )

237 gen ‘ var ’ b mean = r (mean)
gen ‘ var ’ b min = r (min )

239 gen ‘ var ’ b max = r (max)
}

241
drop s ta r t−stop // mikro v a r i a b l e s

243 keep in 1 // only aggregate f i n d i n g s exported f o r makro datase t )
compress

245 saveo ld ” $ssdout /$name/${name} ${run} makro . dta”

247 ex i t

249 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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